MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Structured version   Visualization version   GIF version

Theorem frmdup1 18032
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m 𝑀 = (freeMnd‘𝐼)
frmdup.b 𝐵 = (Base‘𝐺)
frmdup.e 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
frmdup.g (𝜑𝐺 ∈ Mnd)
frmdup.i (𝜑𝐼𝑋)
frmdup.a (𝜑𝐴:𝐼𝐵)
Assertion
Ref Expression
frmdup1 (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐸(𝑥)   𝑀(𝑥)   𝑋(𝑥)

Proof of Theorem frmdup1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . 3 (𝜑𝐼𝑋)
2 frmdup.m . . . 4 𝑀 = (freeMnd‘𝐼)
32frmdmnd 18027 . . 3 (𝐼𝑋𝑀 ∈ Mnd)
41, 3syl 17 . 2 (𝜑𝑀 ∈ Mnd)
5 frmdup.g . 2 (𝜑𝐺 ∈ Mnd)
65adantr 483 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐼) → 𝐺 ∈ Mnd)
7 simpr 487 . . . . . . 7 ((𝜑𝑥 ∈ Word 𝐼) → 𝑥 ∈ Word 𝐼)
8 frmdup.a . . . . . . . 8 (𝜑𝐴:𝐼𝐵)
98adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ Word 𝐼) → 𝐴:𝐼𝐵)
10 wrdco 14196 . . . . . . 7 ((𝑥 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑥) ∈ Word 𝐵)
117, 9, 10syl2anc 586 . . . . . 6 ((𝜑𝑥 ∈ Word 𝐼) → (𝐴𝑥) ∈ Word 𝐵)
12 frmdup.b . . . . . . 7 𝐵 = (Base‘𝐺)
1312gsumwcl 18006 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝐴𝑥) ∈ Word 𝐵) → (𝐺 Σg (𝐴𝑥)) ∈ 𝐵)
146, 11, 13syl2anc 586 . . . . 5 ((𝜑𝑥 ∈ Word 𝐼) → (𝐺 Σg (𝐴𝑥)) ∈ 𝐵)
15 frmdup.e . . . . 5 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
1614, 15fmptd 6881 . . . 4 (𝜑𝐸:Word 𝐼𝐵)
17 eqid 2824 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
182, 17frmdbas 18020 . . . . . 6 (𝐼𝑋 → (Base‘𝑀) = Word 𝐼)
191, 18syl 17 . . . . 5 (𝜑 → (Base‘𝑀) = Word 𝐼)
2019feq2d 6503 . . . 4 (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵𝐸:Word 𝐼𝐵))
2116, 20mpbird 259 . . 3 (𝜑𝐸:(Base‘𝑀)⟶𝐵)
222, 17frmdelbas 18021 . . . . . . . . 9 (𝑦 ∈ (Base‘𝑀) → 𝑦 ∈ Word 𝐼)
2322ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑦 ∈ Word 𝐼)
242, 17frmdelbas 18021 . . . . . . . . 9 (𝑧 ∈ (Base‘𝑀) → 𝑧 ∈ Word 𝐼)
2524ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝑧 ∈ Word 𝐼)
268adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐴:𝐼𝐵)
27 ccatco 14200 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴𝑦) ++ (𝐴𝑧)))
2823, 25, 26, 27syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴 ∘ (𝑦 ++ 𝑧)) = ((𝐴𝑦) ++ (𝐴𝑧)))
2928oveq2d 7175 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))))
305adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → 𝐺 ∈ Mnd)
31 wrdco 14196 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑦) ∈ Word 𝐵)
3223, 26, 31syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴𝑦) ∈ Word 𝐵)
33 wrdco 14196 . . . . . . . 8 ((𝑧 ∈ Word 𝐼𝐴:𝐼𝐵) → (𝐴𝑧) ∈ Word 𝐵)
3425, 26, 33syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐴𝑧) ∈ Word 𝐵)
35 eqid 2824 . . . . . . . 8 (+g𝐺) = (+g𝐺)
3612, 35gsumccat 18009 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑦) ∈ Word 𝐵 ∧ (𝐴𝑧) ∈ Word 𝐵) → (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
3730, 32, 34, 36syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg ((𝐴𝑦) ++ (𝐴𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
3829, 37eqtrd 2859 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
39 eqid 2824 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
402, 17, 39frmdadd 18023 . . . . . . . 8 ((𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀)) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4140adantl 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦(+g𝑀)𝑧) = (𝑦 ++ 𝑧))
4241fveq2d 6677 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = (𝐸‘(𝑦 ++ 𝑧)))
43 ccatcl 13929 . . . . . . . 8 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
4423, 25, 43syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝑦 ++ 𝑧) ∈ Word 𝐼)
45 coeq2 5732 . . . . . . . . 9 (𝑥 = (𝑦 ++ 𝑧) → (𝐴𝑥) = (𝐴 ∘ (𝑦 ++ 𝑧)))
4645oveq2d 7175 . . . . . . . 8 (𝑥 = (𝑦 ++ 𝑧) → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
47 ovex 7192 . . . . . . . 8 (𝐺 Σg (𝐴𝑥)) ∈ V
4846, 15, 47fvmpt3i 6776 . . . . . . 7 ((𝑦 ++ 𝑧) ∈ Word 𝐼 → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
4944, 48syl 17 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦 ++ 𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
5042, 49eqtrd 2859 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = (𝐺 Σg (𝐴 ∘ (𝑦 ++ 𝑧))))
51 coeq2 5732 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
5251oveq2d 7175 . . . . . . . 8 (𝑥 = 𝑦 → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴𝑦)))
5352, 15, 47fvmpt3i 6776 . . . . . . 7 (𝑦 ∈ Word 𝐼 → (𝐸𝑦) = (𝐺 Σg (𝐴𝑦)))
54 coeq2 5732 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
5554oveq2d 7175 . . . . . . . 8 (𝑥 = 𝑧 → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg (𝐴𝑧)))
5655, 15, 47fvmpt3i 6776 . . . . . . 7 (𝑧 ∈ Word 𝐼 → (𝐸𝑧) = (𝐺 Σg (𝐴𝑧)))
5753, 56oveqan12d 7178 . . . . . 6 ((𝑦 ∈ Word 𝐼𝑧 ∈ Word 𝐼) → ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
5823, 25, 57syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) = ((𝐺 Σg (𝐴𝑦))(+g𝐺)(𝐺 Σg (𝐴𝑧))))
5938, 50, 583eqtr4d 2869 . . . 4 ((𝜑 ∧ (𝑦 ∈ (Base‘𝑀) ∧ 𝑧 ∈ (Base‘𝑀))) → (𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)))
6059ralrimivva 3194 . . 3 (𝜑 → ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)))
61 wrd0 13892 . . . 4 ∅ ∈ Word 𝐼
62 coeq2 5732 . . . . . . . 8 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ∘ ∅))
63 co02 6116 . . . . . . . 8 (𝐴 ∘ ∅) = ∅
6462, 63syl6eq 2875 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = ∅)
6564oveq2d 7175 . . . . . 6 (𝑥 = ∅ → (𝐺 Σg (𝐴𝑥)) = (𝐺 Σg ∅))
66 eqid 2824 . . . . . . 7 (0g𝐺) = (0g𝐺)
6766gsum0 17897 . . . . . 6 (𝐺 Σg ∅) = (0g𝐺)
6865, 67syl6eq 2875 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝐴𝑥)) = (0g𝐺))
6968, 15, 47fvmpt3i 6776 . . . 4 (∅ ∈ Word 𝐼 → (𝐸‘∅) = (0g𝐺))
7061, 69mp1i 13 . . 3 (𝜑 → (𝐸‘∅) = (0g𝐺))
7121, 60, 703jca 1124 . 2 (𝜑 → (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) ∧ (𝐸‘∅) = (0g𝐺)))
722frmd0 18028 . . 3 ∅ = (0g𝑀)
7317, 12, 39, 35, 72, 66ismhm 17961 . 2 (𝐸 ∈ (𝑀 MndHom 𝐺) ↔ ((𝑀 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ (𝐸:(Base‘𝑀)⟶𝐵 ∧ ∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)(𝐸‘(𝑦(+g𝑀)𝑧)) = ((𝐸𝑦)(+g𝐺)(𝐸𝑧)) ∧ (𝐸‘∅) = (0g𝐺))))
744, 5, 71, 73syl21anbrc 1340 1 (𝜑𝐸 ∈ (𝑀 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  c0 4294  cmpt 5149  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  Word cword 13864   ++ cconcat 13925  Basecbs 16486  +gcplusg 16568  0gc0g 16716   Σg cgsu 16717  Mndcmnd 17914   MndHom cmhm 17957  freeMndcfrmd 18015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-concat 13926  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-frmd 18017
This theorem is referenced by:  frmdup3  18035
  Copyright terms: Public domain W3C validator