MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Structured version   Visualization version   GIF version

Theorem frmdup3 18034
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
frmdup3.m 𝑀 = (freeMnd‘𝐼)
frmdup3.b 𝐵 = (Base‘𝐺)
frmdup3.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdup3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝑚,𝐺   𝑚,𝐼   𝑚,𝑀   𝑈,𝑚   𝑚,𝑉

Proof of Theorem frmdup3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3 𝑀 = (freeMnd‘𝐼)
2 frmdup3.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2823 . . 3 (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))
4 simp1 1132 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐺 ∈ Mnd)
5 simp2 1133 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐼𝑉)
6 simp3 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴:𝐼𝐵)
71, 2, 3, 4, 5, 6frmdup1 18031 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺))
84adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐺 ∈ Mnd)
95adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐼𝑉)
106adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝐴:𝐼𝐵)
11 frmdup3.u . . . . 5 𝑈 = (varFMnd𝐼)
12 simpr 487 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
131, 2, 3, 8, 9, 10, 11, 12frmdup2 18032 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑦𝐼) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦)) = (𝐴𝑦))
1413mpteq2dva 5163 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))) = (𝑦𝐼 ↦ (𝐴𝑦)))
15 eqid 2823 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
1615, 2mhmf 17963 . . . . 5 ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
177, 16syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵)
1811vrmdf 18025 . . . . . 6 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
19183ad2ant2 1130 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶Word 𝐼)
201, 15frmdbas 18019 . . . . . . 7 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
21203ad2ant2 1130 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (Base‘𝑀) = Word 𝐼)
2221feq3d 6503 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼))
2319, 22mpbird 259 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝑀))
24 fcompt 6897 . . . 4 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))):(Base‘𝑀)⟶𝐵𝑈:𝐼⟶(Base‘𝑀)) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
2517, 23, 24syl2anc 586 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = (𝑦𝐼 ↦ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))‘(𝑈𝑦))))
266feqmptd 6735 . . 3 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝐴 = (𝑦𝐼 ↦ (𝐴𝑦)))
2714, 25, 263eqtr4d 2868 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴)
281, 2, 11frmdup3lem 18033 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝑚 ∈ (𝑀 MndHom 𝐺) ∧ (𝑚𝑈) = 𝐴)) → 𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
2928expr 459 . . 3 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ 𝑚 ∈ (𝑀 MndHom 𝐺)) → ((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
3029ralrimiva 3184 . 2 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥)))))
31 coeq1 5730 . . . 4 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → (𝑚𝑈) = ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈))
3231eqeq1d 2825 . . 3 (𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) → ((𝑚𝑈) = 𝐴 ↔ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴))
3332eqreu 3722 . 2 (((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∈ (𝑀 MndHom 𝐺) ∧ ((𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))) ∘ 𝑈) = 𝐴 ∧ ∀𝑚 ∈ (𝑀 MndHom 𝐺)((𝑚𝑈) = 𝐴𝑚 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
347, 27, 30, 33syl3anc 1367 1 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚𝑈) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  ∃!wreu 3142  cmpt 5148  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  Word cword 13864  Basecbs 16485   Σg cgsu 16716  Mndcmnd 17913   MndHom cmhm 17956  freeMndcfrmd 18014  varFMndcvrmd 18015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-frmd 18016  df-vrmd 18017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator