Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frmin Structured version   Visualization version   GIF version

Theorem frmin 30825
Description: Every (possibly proper) subclass of a class 𝐴 with a founded, set-like relation 𝑅 has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory. This is a very strong generalization of tz6.26 5518 and tz7.5 5551. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frmin (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem frmin
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 4899 . . . 4 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 sess2 4901 . . . 4 (𝐵𝐴 → (𝑅 Se 𝐴𝑅 Se 𝐵))
31, 2anim12d 583 . . 3 (𝐵𝐴 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐵𝑅 Se 𝐵)))
4 n0 3793 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
5 predeq3 5491 . . . . . . . . . . 11 (𝑦 = 𝑏 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑏))
65eqeq1d 2516 . . . . . . . . . 10 (𝑦 = 𝑏 → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, 𝐵, 𝑏) = ∅))
76rspcev 3186 . . . . . . . . 9 ((𝑏𝐵 ∧ Pred(𝑅, 𝐵, 𝑏) = ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
87ex 448 . . . . . . . 8 (𝑏𝐵 → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
98adantl 480 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
10 setlikespec 5508 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → Pred(𝑅, 𝐵, 𝑏) ∈ V)
11 trpredpred 30814 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ∈ V → Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏))
12 ssn0 3831 . . . . . . . . . . . . . 14 ((Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) ∧ Pred(𝑅, 𝐵, 𝑏) ≠ ∅) → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)
1312ex 448 . . . . . . . . . . . . 13 (Pred(𝑅, 𝐵, 𝑏) ⊆ TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
1411, 13syl 17 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
15 trpredss 30815 . . . . . . . . . . . 12 (Pred(𝑅, 𝐵, 𝑏) ∈ V → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
1614, 15jctild 563 . . . . . . . . . . 11 (Pred(𝑅, 𝐵, 𝑏) ∈ V → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1710, 16syl 17 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
1817adantr 479 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
19 trpredex 30823 . . . . . . . . . . 11 TrPred(𝑅, 𝐵, 𝑏) ∈ V
20 sseq1 3493 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐𝐵 ↔ TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵))
21 neeq1 2748 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (𝑐 ≠ ∅ ↔ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅))
2220, 21anbi12d 742 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑐𝐵𝑐 ≠ ∅) ↔ (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅)))
23 predeq2 5490 . . . . . . . . . . . . . . 15 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝑐, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
2423eqeq1d 2516 . . . . . . . . . . . . . 14 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2524rexeqbi1dv 3028 . . . . . . . . . . . . 13 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅ ↔ ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
2622, 25imbi12d 332 . . . . . . . . . . . 12 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → (((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) ↔ ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅)))
2726imbi2d 328 . . . . . . . . . . 11 (𝑐 = TrPred(𝑅, 𝐵, 𝑏) → ((𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅)) ↔ (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))))
28 dffr4 5503 . . . . . . . . . . . 12 (𝑅 Fr 𝐵 ↔ ∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
29 sp 1990 . . . . . . . . . . . 12 (∀𝑐((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅) → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3028, 29sylbi 205 . . . . . . . . . . 11 (𝑅 Fr 𝐵 → ((𝑐𝐵𝑐 ≠ ∅) → ∃𝑦𝑐 Pred(𝑅, 𝑐, 𝑦) = ∅))
3119, 27, 30vtocl 3136 . . . . . . . . . 10 (𝑅 Fr 𝐵 → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3210, 15syl 17 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
3332adantr 479 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵)
34 trpredtr 30816 . . . . . . . . . . . . . . . 16 ((𝑏𝐵𝑅 Se 𝐵) → (𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)))
3534imp 443 . . . . . . . . . . . . . . 15 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏))
36 sspred 5495 . . . . . . . . . . . . . . 15 ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ Pred(𝑅, 𝐵, 𝑦) ⊆ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3733, 35, 36syl2anc 690 . . . . . . . . . . . . . 14 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦))
3837eqeq1d 2516 . . . . . . . . . . . . 13 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, 𝐵, 𝑦) = ∅ ↔ Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅))
3938biimprd 236 . . . . . . . . . . . 12 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑦 ∈ TrPred(𝑅, 𝐵, 𝑏)) → (Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → Pred(𝑅, 𝐵, 𝑦) = ∅))
4039reximdva 2904 . . . . . . . . . . 11 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅))
41 ssrexv 3534 . . . . . . . . . . 11 (TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, 𝐵, 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4232, 40, 41sylsyld 58 . . . . . . . . . 10 ((𝑏𝐵𝑅 Se 𝐵) → (∃𝑦 ∈ TrPred (𝑅, 𝐵, 𝑏)Pred(𝑅, TrPred(𝑅, 𝐵, 𝑏), 𝑦) = ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4331, 42sylan9r 687 . . . . . . . . 9 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → ((TrPred(𝑅, 𝐵, 𝑏) ⊆ 𝐵 ∧ TrPred(𝑅, 𝐵, 𝑏) ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4418, 43syld 45 . . . . . . . 8 (((𝑏𝐵𝑅 Se 𝐵) ∧ 𝑅 Fr 𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4544an31s 843 . . . . . . 7 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → (Pred(𝑅, 𝐵, 𝑏) ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
469, 45pm2.61dne 2772 . . . . . 6 (((𝑅 Fr 𝐵𝑅 Se 𝐵) ∧ 𝑏𝐵) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
4746ex 448 . . . . 5 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
4847exlimdv 1814 . . . 4 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (∃𝑏 𝑏𝐵 → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
494, 48syl5bi 230 . . 3 ((𝑅 Fr 𝐵𝑅 Se 𝐵) → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅))
503, 49syl6com 36 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)))
5150imp32 447 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1472   = wceq 1474  wex 1694  wcel 1938  wne 2684  wrex 2801  Vcvv 3077  wss 3444  c0 3777   Fr wfr 4888   Se wse 4889  Predcpred 5486  TrPredctrpred 30803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-om 6834  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-trpred 30804
This theorem is referenced by:  frind  30826
  Copyright terms: Public domain W3C validator