Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem4 Structured version   Visualization version   GIF version

Theorem frrlem4 31476
 Description: Lemma for founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem4.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
Assertion
Ref Expression
frrlem4 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑓,𝑔   𝐴,,𝑥,𝑦,𝑎   𝐵,𝑎   𝑓,,𝑥,𝑦   𝐺,𝑎,𝑓,𝑔   ,𝐺,𝑥,𝑦   𝑥,𝑔,𝑦   𝑅,𝑎,𝑓,𝑔   𝑅,,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem frrlem4
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frrlem4.1 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
21frrlem2 31474 . . . . 5 (𝑔𝐵 → Fun 𝑔)
3 funfn 5879 . . . . 5 (Fun 𝑔𝑔 Fn dom 𝑔)
42, 3sylib 208 . . . 4 (𝑔𝐵𝑔 Fn dom 𝑔)
5 fnresin1 5965 . . . 4 (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
64, 5syl 17 . . 3 (𝑔𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
76adantr 481 . 2 ((𝑔𝐵𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
8 inss1 3816 . . . . . . . 8 (dom 𝑔 ∩ dom ) ⊆ dom 𝑔
98sseli 3584 . . . . . . 7 (𝑎 ∈ (dom 𝑔 ∩ dom ) → 𝑎 ∈ dom 𝑔)
101frrlem1 31473 . . . . . . . . 9 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))}
1110abeq2i 2738 . . . . . . . 8 (𝑔𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))))
12 fndm 5950 . . . . . . . . . 10 (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏)
13 rsp 2929 . . . . . . . . . . . 12 (∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎𝑏 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
14133ad2ant3 1082 . . . . . . . . . . 11 ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎𝑏 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
15 eleq2 2693 . . . . . . . . . . . 12 (dom 𝑔 = 𝑏 → (𝑎 ∈ dom 𝑔𝑎𝑏))
1615imbi1d 331 . . . . . . . . . . 11 (dom 𝑔 = 𝑏 → ((𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ↔ (𝑎𝑏 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))))
1714, 16syl5ibrcom 237 . . . . . . . . . 10 ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (dom 𝑔 = 𝑏 → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))))
1812, 17mpan9 486 . . . . . . . . 9 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1918exlimiv 1860 . . . . . . . 8 (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
2011, 19sylbi 207 . . . . . . 7 (𝑔𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
219, 20syl5 34 . . . . . 6 (𝑔𝐵 → (𝑎 ∈ (dom 𝑔 ∩ dom ) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
2221imp 445 . . . . 5 ((𝑔𝐵𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
2322adantlr 750 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
24 fvres 6165 . . . . 5 (𝑎 ∈ (dom 𝑔 ∩ dom ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
2524adantl 482 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
26 resres 5372 . . . . . 6 ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))
27 predss 5649 . . . . . . . . 9 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom )
28 sseqin2 3800 . . . . . . . . 9 (Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))
2927, 28mpbi 220 . . . . . . . 8 ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)
301frrlem1 31473 . . . . . . . . . . . 12 𝐵 = { ∣ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))}
3130abeq2i 2738 . . . . . . . . . . 11 (𝐵 ↔ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))))
32 eeanv 2186 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))))
33 simpl1 1062 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑏𝐴)
34 ssinss1 3824 . . . . . . . . . . . . . . . . 17 (𝑏𝐴 → (𝑏𝑐) ⊆ 𝐴)
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑏𝑐) ⊆ 𝐴)
36 simpl2 1063 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)
37 simpr2 1066 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
38 nfra1 2941 . . . . . . . . . . . . . . . . . . 19 𝑎𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏
39 nfra1 2941 . . . . . . . . . . . . . . . . . . 19 𝑎𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐
4038, 39nfan 1830 . . . . . . . . . . . . . . . . . 18 𝑎(∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
41 inss1 3816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏𝑐) ⊆ 𝑏
4241sseli 3584 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑏)
43 rsp 2929 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
4442, 43syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
45 inss2 3817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏𝑐) ⊆ 𝑐
4645sseli 3584 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑐)
47 rsp 2929 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4846, 47syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4944, 48anim12d 585 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑏𝑐) → ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)))
50 ssin 3818 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5150biimpi 206 . . . . . . . . . . . . . . . . . . 19 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5249, 51syl6com 37 . . . . . . . . . . . . . . . . . 18 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5340, 52ralrimi 2956 . . . . . . . . . . . . . . . . 17 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5436, 37, 53syl2anc 692 . . . . . . . . . . . . . . . 16 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
55 fndm 5950 . . . . . . . . . . . . . . . . . 18 ( Fn 𝑐 → dom = 𝑐)
56 ineq12 3792 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (dom 𝑔 ∩ dom ) = (𝑏𝑐))
5756sseq1d 3616 . . . . . . . . . . . . . . . . . . 19 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ↔ (𝑏𝑐) ⊆ 𝐴))
58 sseq2 3611 . . . . . . . . . . . . . . . . . . . . 21 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5958raleqbi1dv 3140 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
6056, 59syl 17 . . . . . . . . . . . . . . . . . . 19 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
6157, 60anbi12d 746 . . . . . . . . . . . . . . . . . 18 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6212, 55, 61syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑏 Fn 𝑐) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6362biimprcd 240 . . . . . . . . . . . . . . . 16 (((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)) → ((𝑔 Fn 𝑏 Fn 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))))
6435, 54, 63syl2anc 692 . . . . . . . . . . . . . . 15 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((𝑔 Fn 𝑏 Fn 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))))
6564impcom 446 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6665an4s 868 . . . . . . . . . . . . 13 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6766exlimivv 1862 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6832, 67sylbir 225 . . . . . . . . . . 11 ((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6911, 31, 68syl2anb 496 . . . . . . . . . 10 ((𝑔𝐵𝐵) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
7069adantr 481 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
71 simpr 477 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → 𝑎 ∈ (dom 𝑔 ∩ dom ))
72 preddowncl 5669 . . . . . . . . 9 (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) → (𝑎 ∈ (dom 𝑔 ∩ dom ) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)))
7370, 71, 72sylc 65 . . . . . . . 8 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))
7429, 73syl5eq 2672 . . . . . . 7 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎))
7574reseq2d 5360 . . . . . 6 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7626, 75syl5eq 2672 . . . . 5 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7776oveq2d 6621 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
7823, 25, 773eqtr4d 2670 . . 3 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
7978ralrimiva 2965 . 2 ((𝑔𝐵𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
807, 79jca 554 1 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480  ∃wex 1701   ∈ wcel 1992  {cab 2612  ∀wral 2912   ∩ cin 3559   ⊆ wss 3560  dom cdm 5079   ↾ cres 5081  Predcpred 5641  Fun wfun 5844   Fn wfn 5845  ‘cfv 5850  (class class class)co 6605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-iota 5813  df-fun 5852  df-fn 5853  df-fv 5858  df-ov 6608 This theorem is referenced by:  frrlem5  31477
 Copyright terms: Public domain W3C validator