Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5 Structured version   Visualization version   GIF version

Theorem frrlem5 31909
 Description: Lemma for founded recursion. The values of two acceptable functions agree within their domains. (Contributed by Paul Chapman, 21-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
frrlem5.1 𝑅 Fr 𝐴
frrlem5.2 𝑅 Se 𝐴
frrlem5.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem5 ((𝑔𝐵𝐵) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐺,,𝑥,𝑦,𝑔   𝑢,𝑔,𝑣,𝑥   𝑦,𝑔   𝑢,,𝑣   𝑅,𝑓,𝑔,,𝑥,𝑦   𝐵,𝑔,,𝑢,𝑣,𝑥
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑦,𝑓)   𝑅(𝑣,𝑢)   𝐺(𝑣,𝑢)

Proof of Theorem frrlem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3234 . . . . . 6 𝑥 ∈ V
2 vex 3234 . . . . . 6 𝑢 ∈ V
31, 2breldm 5361 . . . . 5 (𝑥𝑔𝑢𝑥 ∈ dom 𝑔)
4 vex 3234 . . . . . 6 𝑣 ∈ V
51, 4breldm 5361 . . . . 5 (𝑥𝑣𝑥 ∈ dom )
63, 5anim12i 589 . . . 4 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥 ∈ dom 𝑔𝑥 ∈ dom ))
7 elin 3829 . . . 4 (𝑥 ∈ (dom 𝑔 ∩ dom ) ↔ (𝑥 ∈ dom 𝑔𝑥 ∈ dom ))
86, 7sylibr 224 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ))
9 anandir 889 . . . 4 (((𝑥𝑔𝑢𝑥𝑣) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ↔ ((𝑥𝑔𝑢𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑣𝑥 ∈ (dom 𝑔 ∩ dom ))))
102brres 5437 . . . . 5 (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢 ↔ (𝑥𝑔𝑢𝑥 ∈ (dom 𝑔 ∩ dom )))
114brres 5437 . . . . 5 (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣 ↔ (𝑥𝑣𝑥 ∈ (dom 𝑔 ∩ dom )))
1210, 11anbi12i 733 . . . 4 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥𝑔𝑢𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑣𝑥 ∈ (dom 𝑔 ∩ dom ))))
139, 12sylbb2 228 . . 3 (((𝑥𝑔𝑢𝑥𝑣) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
148, 13mpdan 703 . 2 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
15 frrlem5.3 . . . . . . . . 9 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1615frrlem3 31907 . . . . . . . 8 (𝑔𝐵 → dom 𝑔𝐴)
17 ssinss1 3874 . . . . . . . 8 (dom 𝑔𝐴 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
18 frrlem5.1 . . . . . . . . . 10 𝑅 Fr 𝐴
19 frss 5110 . . . . . . . . . 10 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Fr 𝐴𝑅 Fr (dom 𝑔 ∩ dom )))
2018, 19mpi 20 . . . . . . . . 9 ((dom 𝑔 ∩ dom ) ⊆ 𝐴𝑅 Fr (dom 𝑔 ∩ dom ))
21 frrlem5.2 . . . . . . . . . 10 𝑅 Se 𝐴
22 sess2 5112 . . . . . . . . . 10 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Se 𝐴𝑅 Se (dom 𝑔 ∩ dom )))
2321, 22mpi 20 . . . . . . . . 9 ((dom 𝑔 ∩ dom ) ⊆ 𝐴𝑅 Se (dom 𝑔 ∩ dom ))
2420, 23jca 553 . . . . . . . 8 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )))
2516, 17, 243syl 18 . . . . . . 7 (𝑔𝐵 → (𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )))
2625adantr 480 . . . . . 6 ((𝑔𝐵𝐵) → (𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )))
2715frrlem4 31908 . . . . . 6 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
2815frrlem4 31908 . . . . . . . 8 ((𝐵𝑔𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
2928ancoms 468 . . . . . . 7 ((𝑔𝐵𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
30 incom 3838 . . . . . . . . . . 11 (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)
3130reseq2i 5425 . . . . . . . . . 10 ( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔))
3231fneq1i 6023 . . . . . . . . 9 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom 𝑔 ∩ dom ))
3330fneq2i 6024 . . . . . . . . 9 (( ↾ (dom ∩ dom 𝑔)) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3432, 33bitri 264 . . . . . . . 8 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3531fveq1i 6230 . . . . . . . . . 10 (( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (( ↾ (dom ∩ dom 𝑔))‘𝑎)
36 predeq2 5721 . . . . . . . . . . . . 13 ((dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3730, 36ax-mp 5 . . . . . . . . . . . 12 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)
3831, 37reseq12i 5426 . . . . . . . . . . 11 (( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3938oveq2i 6701 . . . . . . . . . 10 (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))
4035, 39eqeq12i 2665 . . . . . . . . 9 ((( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ (( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4130, 40raleqbii 3019 . . . . . . . 8 (∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4234, 41anbi12i 733 . . . . . . 7 ((( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ↔ (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
4329, 42sylibr 224 . . . . . 6 ((𝑔𝐵𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
44 frr3g 31904 . . . . . 6 (((𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ∧ (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4526, 27, 43, 44syl3anc 1366 . . . . 5 ((𝑔𝐵𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4645breqd 4696 . . . 4 ((𝑔𝐵𝐵) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
4746biimprd 238 . . 3 ((𝑔𝐵𝐵) → (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣))
4815frrlem2 31906 . . . . 5 (𝑔𝐵 → Fun 𝑔)
49 funres 5967 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
50 dffun2 5936 . . . . . 6 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom )) ∧ ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣)))
5150simprbi 479 . . . . 5 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) → ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
52 2sp 2094 . . . . . 6 (∀𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5352sps 2093 . . . . 5 (∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5448, 49, 51, 534syl 19 . . . 4 (𝑔𝐵 → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5554adantr 480 . . 3 ((𝑔𝐵𝐵) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5647, 55sylan2d 498 . 2 ((𝑔𝐵𝐵) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5714, 56syl5 34 1 ((𝑔𝐵𝐵) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  {cab 2637  ∀wral 2941   ∩ cin 3606   ⊆ wss 3607   class class class wbr 4685   Fr wfr 5099   Se wse 5100  dom cdm 5143   ↾ cres 5145  Rel wrel 5148  Predcpred 5717  Fun wfun 5920   Fn wfn 5921  ‘cfv 5926  (class class class)co 6690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-trpred 31842 This theorem is referenced by:  frrlem5c  31911
 Copyright terms: Public domain W3C validator