Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5c Structured version   Visualization version   GIF version

Theorem frrlem5c 31508
Description: Lemma for founded recursion. The union of a subclass of 𝐵 is a function. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1 𝑅 Fr 𝐴
frrlem5.2 𝑅 Se 𝐴
frrlem5.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
Assertion
Ref Expression
frrlem5c (𝐶𝐵 → Fun 𝐶)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem frrlem5c
Dummy variables 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4426 . 2 (𝐶𝐵 𝐶 𝐵)
2 ssid 3605 . . . 4 𝐵𝐵
3 frrlem5.1 . . . . 5 𝑅 Fr 𝐴
4 frrlem5.2 . . . . 5 𝑅 Se 𝐴
5 frrlem5.3 . . . . 5 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
63, 4, 5frrlem5b 31507 . . . 4 (𝐵𝐵 → Rel 𝐵)
72, 6ax-mp 5 . . 3 Rel 𝐵
8 eluni 4407 . . . . . . . . 9 (⟨𝑥, 𝑢⟩ ∈ 𝐵 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐵))
9 df-br 4616 . . . . . . . . 9 (𝑥 𝐵𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐵)
10 df-br 4616 . . . . . . . . . . 11 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
1110anbi1i 730 . . . . . . . . . 10 ((𝑥𝑔𝑢𝑔𝐵) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐵))
1211exbii 1771 . . . . . . . . 9 (∃𝑔(𝑥𝑔𝑢𝑔𝐵) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐵))
138, 9, 123bitr4i 292 . . . . . . . 8 (𝑥 𝐵𝑢 ↔ ∃𝑔(𝑥𝑔𝑢𝑔𝐵))
14 eluni 4407 . . . . . . . . 9 (⟨𝑥, 𝑣⟩ ∈ 𝐵 ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐵))
15 df-br 4616 . . . . . . . . 9 (𝑥 𝐵𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐵)
16 df-br 4616 . . . . . . . . . . 11 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1716anbi1i 730 . . . . . . . . . 10 ((𝑥𝑣𝐵) ↔ (⟨𝑥, 𝑣⟩ ∈ 𝐵))
1817exbii 1771 . . . . . . . . 9 (∃(𝑥𝑣𝐵) ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐵))
1914, 15, 183bitr4i 292 . . . . . . . 8 (𝑥 𝐵𝑣 ↔ ∃(𝑥𝑣𝐵))
2013, 19anbi12i 732 . . . . . . 7 ((𝑥 𝐵𝑢𝑥 𝐵𝑣) ↔ (∃𝑔(𝑥𝑔𝑢𝑔𝐵) ∧ ∃(𝑥𝑣𝐵)))
21 eeanv 2181 . . . . . . 7 (∃𝑔((𝑥𝑔𝑢𝑔𝐵) ∧ (𝑥𝑣𝐵)) ↔ (∃𝑔(𝑥𝑔𝑢𝑔𝐵) ∧ ∃(𝑥𝑣𝐵)))
2220, 21bitr4i 267 . . . . . 6 ((𝑥 𝐵𝑢𝑥 𝐵𝑣) ↔ ∃𝑔((𝑥𝑔𝑢𝑔𝐵) ∧ (𝑥𝑣𝐵)))
233, 4, 5frrlem5 31506 . . . . . . . . 9 ((𝑔𝐵𝐵) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
2423impcom 446 . . . . . . . 8 (((𝑥𝑔𝑢𝑥𝑣) ∧ (𝑔𝐵𝐵)) → 𝑢 = 𝑣)
2524an4s 868 . . . . . . 7 (((𝑥𝑔𝑢𝑔𝐵) ∧ (𝑥𝑣𝐵)) → 𝑢 = 𝑣)
2625exlimivv 1857 . . . . . 6 (∃𝑔((𝑥𝑔𝑢𝑔𝐵) ∧ (𝑥𝑣𝐵)) → 𝑢 = 𝑣)
2722, 26sylbi 207 . . . . 5 ((𝑥 𝐵𝑢𝑥 𝐵𝑣) → 𝑢 = 𝑣)
2827ax-gen 1719 . . . 4 𝑣((𝑥 𝐵𝑢𝑥 𝐵𝑣) → 𝑢 = 𝑣)
2928gen2 1720 . . 3 𝑥𝑢𝑣((𝑥 𝐵𝑢𝑥 𝐵𝑣) → 𝑢 = 𝑣)
30 dffun2 5859 . . 3 (Fun 𝐵 ↔ (Rel 𝐵 ∧ ∀𝑥𝑢𝑣((𝑥 𝐵𝑢𝑥 𝐵𝑣) → 𝑢 = 𝑣)))
317, 29, 30mpbir2an 954 . 2 Fun 𝐵
32 funss 5868 . 2 ( 𝐶 𝐵 → (Fun 𝐵 → Fun 𝐶))
331, 31, 32mpisyl 21 1 (𝐶𝐵 → Fun 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wral 2907  wss 3556  cop 4156   cuni 4404   class class class wbr 4615   Fr wfr 5032   Se wse 5033  cres 5078  Rel wrel 5081  Predcpred 5640  Fun wfun 5843   Fn wfn 5844  cfv 5849  (class class class)co 6607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-trpred 31440
This theorem is referenced by:  frrlem10  31513
  Copyright terms: Public domain W3C validator