MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsn Structured version   Visualization version   GIF version

Theorem frsn 5101
Description: Founded relation on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
frsn (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem frsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snprc 4196 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
2 fr0 5006 . . . . . . 7 𝑅 Fr ∅
3 freq2 4998 . . . . . . 7 ({𝐴} = ∅ → (𝑅 Fr {𝐴} ↔ 𝑅 Fr ∅))
42, 3mpbiri 246 . . . . . 6 ({𝐴} = ∅ → 𝑅 Fr {𝐴})
51, 4sylbi 205 . . . . 5 𝐴 ∈ V → 𝑅 Fr {𝐴})
65adantl 480 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → 𝑅 Fr {𝐴})
7 brrelex 5069 . . . . 5 ((Rel 𝑅𝐴𝑅𝐴) → 𝐴 ∈ V)
87stoic1a 1687 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝐴)
96, 82thd 253 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
109ex 448 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴)))
11 df-fr 4986 . . . 4 (𝑅 Fr {𝐴} ↔ ∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
12 sssn 4295 . . . . . . . . . . 11 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
13 neor 2872 . . . . . . . . . . 11 ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ↔ (𝑥 ≠ ∅ → 𝑥 = {𝐴}))
1412, 13sylbb 207 . . . . . . . . . 10 (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → 𝑥 = {𝐴}))
1514imp 443 . . . . . . . . 9 ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴})
1615adantl 480 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 = {𝐴})
17 eqimss 3619 . . . . . . . . . 10 (𝑥 = {𝐴} → 𝑥 ⊆ {𝐴})
1817adantl 480 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴})
19 snnzg 4250 . . . . . . . . . . 11 (𝐴 ∈ V → {𝐴} ≠ ∅)
20 neeq1 2843 . . . . . . . . . . 11 (𝑥 = {𝐴} → (𝑥 ≠ ∅ ↔ {𝐴} ≠ ∅))
2119, 20syl5ibrcom 235 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 = {𝐴} → 𝑥 ≠ ∅))
2221imp 443 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → 𝑥 ≠ ∅)
2318, 22jca 552 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑥 = {𝐴}) → (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅))
2416, 23impbida 872 . . . . . . 7 (𝐴 ∈ V → ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) ↔ 𝑥 = {𝐴}))
2524imbi1d 329 . . . . . 6 (𝐴 ∈ V → (((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ (𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
2625albidv 1835 . . . . 5 (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥(𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
27 snex 4829 . . . . . 6 {𝐴} ∈ V
28 raleq 3114 . . . . . . 7 (𝑥 = {𝐴} → (∀𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
2928rexeqbi1dv 3123 . . . . . 6 (𝑥 = {𝐴} → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
3027, 29ceqsalv 3205 . . . . 5 (∀𝑥(𝑥 = {𝐴} → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦)
3126, 30syl6bb 274 . . . 4 (𝐴 ∈ V → (∀𝑥((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
3211, 31syl5bb 270 . . 3 (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦))
33 breq2 4581 . . . . . 6 (𝑦 = 𝐴 → (𝑧𝑅𝑦𝑧𝑅𝐴))
3433notbid 306 . . . . 5 (𝑦 = 𝐴 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐴))
3534ralbidv 2968 . . . 4 (𝑦 = 𝐴 → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴))
3635rexsng 4165 . . 3 (𝐴 ∈ V → (∃𝑦 ∈ {𝐴}∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴))
37 breq1 4580 . . . . 5 (𝑧 = 𝐴 → (𝑧𝑅𝐴𝐴𝑅𝐴))
3837notbid 306 . . . 4 (𝑧 = 𝐴 → (¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴))
3938ralsng 4164 . . 3 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝐴 ↔ ¬ 𝐴𝑅𝐴))
4032, 36, 393bitrd 292 . 2 (𝐴 ∈ V → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
4110, 40pm2.61d2 170 1 (Rel 𝑅 → (𝑅 Fr {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  wal 1472   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  Vcvv 3172  wss 3539  c0 3873  {csn 4124   class class class wbr 4577   Fr wfr 4983  Rel wrel 5032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pr 4827
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-fr 4986  df-xp 5033  df-rel 5034
This theorem is referenced by:  wesn  5102
  Copyright terms: Public domain W3C validator