MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmpt Structured version   Visualization version   GIF version

Theorem frsucmpt 8072
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.)
Hypotheses
Ref Expression
frsucmpt.1 𝑥𝐴
frsucmpt.2 𝑥𝐵
frsucmpt.3 𝑥𝐷
frsucmpt.4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
frsucmpt ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)

Proof of Theorem frsucmpt
StepHypRef Expression
1 frsuc 8071 . . 3 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)))
2 frsucmpt.4 . . . 4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
32fveq1i 6670 . . 3 (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵)
42fveq1i 6670 . . . 4 (𝐹𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)
54fveq2i 6672 . . 3 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))
61, 3, 53eqtr4g 2881 . 2 (𝐵 ∈ ω → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
7 fvex 6682 . . 3 (𝐹𝐵) ∈ V
8 nfmpt1 5163 . . . . . . . 8 𝑥(𝑥 ∈ V ↦ 𝐶)
9 frsucmpt.1 . . . . . . . 8 𝑥𝐴
108, 9nfrdg 8049 . . . . . . 7 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
11 nfcv 2977 . . . . . . 7 𝑥ω
1210, 11nfres 5854 . . . . . 6 𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
132, 12nfcxfr 2975 . . . . 5 𝑥𝐹
14 frsucmpt.2 . . . . 5 𝑥𝐵
1513, 14nffv 6679 . . . 4 𝑥(𝐹𝐵)
16 frsucmpt.3 . . . 4 𝑥𝐷
17 frsucmpt.5 . . . 4 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
18 eqid 2821 . . . 4 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1915, 16, 17, 18fvmptf 6788 . . 3 (((𝐹𝐵) ∈ V ∧ 𝐷𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
207, 19mpan 688 . 2 (𝐷𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
216, 20sylan9eq 2876 1 ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wnfc 2961  Vcvv 3494  cmpt 5145  cres 5556  suc csuc 6192  cfv 6354  ωcom 7579  reccrdg 8044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045
This theorem is referenced by:  frsucmpt2w  8074  frsucmpt2  8075  dffi3  8894  axdclem  9940  trpredlem1  33066  trpredtr  33069  trpredmintr  33070  trpred0  33075  trpredrec  33077
  Copyright terms: Public domain W3C validator