MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmpt2 Structured version   Visualization version   GIF version

Theorem frsucmpt2 8065
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt2.1 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt2.2 (𝑦 = 𝑥𝐸 = 𝐶)
frsucmpt2.3 (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)
Assertion
Ref Expression
frsucmpt2 ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem frsucmpt2
StepHypRef Expression
1 nfcv 2974 . 2 𝑦𝐴
2 nfcv 2974 . 2 𝑦𝐵
3 nfcv 2974 . 2 𝑦𝐷
4 frsucmpt2.1 . . 3 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
5 frsucmpt2.2 . . . . . 6 (𝑦 = 𝑥𝐸 = 𝐶)
65cbvmptv 5160 . . . . 5 (𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶)
7 rdgeq1 8036 . . . . 5 ((𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) → rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴))
86, 7ax-mp 5 . . . 4 rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
98reseq1i 5842 . . 3 (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
104, 9eqtr4i 2844 . 2 𝐹 = (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω)
11 frsucmpt2.3 . 2 (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)
121, 2, 3, 10, 11frsucmpt 8062 1 ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cmpt 5137  cres 5550  suc csuc 6186  cfv 6348  ωcom 7569  reccrdg 8034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035
This theorem is referenced by:  unblem2  8759  unblem3  8760  inf0  9072  hsmexlem8  9834  wuncval2  10157  peano5nni  11629  peano2nn  11638  om2uzsuci  13304  neibastop2lem  33605
  Copyright terms: Public domain W3C validator