![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsequb | Structured version Visualization version GIF version |
Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fsequb | ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfi 12963 | . . 3 ⊢ (𝑀...𝑁) ∈ Fin | |
2 | fimaxre3 11160 | . . 3 ⊢ (((𝑀...𝑁) ∈ Fin ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) | |
3 | 1, 2 | mpan 708 | . 2 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) |
4 | r19.26 3200 | . . . . . 6 ⊢ (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) ↔ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦)) | |
5 | peano2re 10399 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
6 | ltp1 11051 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1)) | |
7 | 6 | adantr 472 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → 𝑦 < (𝑦 + 1)) |
8 | simpr 479 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (𝐹‘𝑘) ∈ ℝ) | |
9 | simpl 474 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → 𝑦 ∈ ℝ) | |
10 | 5 | adantr 472 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (𝑦 + 1) ∈ ℝ) |
11 | lelttr 10318 | . . . . . . . . . . 11 ⊢ (((𝐹‘𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝐹‘𝑘) ≤ 𝑦 ∧ 𝑦 < (𝑦 + 1)) → (𝐹‘𝑘) < (𝑦 + 1))) | |
12 | 8, 9, 10, 11 | syl3anc 1477 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → (((𝐹‘𝑘) ≤ 𝑦 ∧ 𝑦 < (𝑦 + 1)) → (𝐹‘𝑘) < (𝑦 + 1))) |
13 | 7, 12 | mpan2d 712 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → ((𝐹‘𝑘) ≤ 𝑦 → (𝐹‘𝑘) < (𝑦 + 1))) |
14 | 13 | expimpd 630 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → (𝐹‘𝑘) < (𝑦 + 1))) |
15 | 14 | ralimdv 3099 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1))) |
16 | breq2 4806 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 1) → ((𝐹‘𝑘) < 𝑥 ↔ (𝐹‘𝑘) < (𝑦 + 1))) | |
17 | 16 | ralbidv 3122 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥 ↔ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1))) |
18 | 17 | rspcev 3447 | . . . . . . 7 ⊢ (((𝑦 + 1) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < (𝑦 + 1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
19 | 5, 15, 18 | syl6an 569 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
20 | 4, 19 | syl5bir 233 | . . . . 5 ⊢ (𝑦 ∈ ℝ → ((∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
21 | 20 | expd 451 | . . . 4 ⊢ (𝑦 ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥))) |
22 | 21 | impcom 445 | . . 3 ⊢ ((∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
23 | 22 | rexlimdva 3167 | . 2 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → (∃𝑦 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ≤ 𝑦 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥)) |
24 | 3, 23 | mpd 15 | 1 ⊢ (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) < 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∃wrex 3049 class class class wbr 4802 ‘cfv 6047 (class class class)co 6811 Fincfn 8119 ℝcr 10125 1c1 10127 + caddc 10129 < clt 10264 ≤ cle 10265 ...cfz 12517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-n0 11483 df-z 11568 df-uz 11878 df-fz 12518 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |