MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf2 Structured version   Visualization version   GIF version

Theorem fsnunf2 6950
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)

Proof of Theorem fsnunf2
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇)
2 simp2 1133 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑋𝑆)
3 neldifsnd 4728 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
4 simp3 1134 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑌𝑇)
5 fsnunf 6949 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
61, 2, 3, 4, 5syl121anc 1371 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
7 difsnid 4745 . . . 4 (𝑋𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
873ad2ant2 1130 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
98feq2d 6502 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇))
106, 9mpbid 234 1 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1083   = wceq 1537  wcel 2114  cdif 3935  cun 3936  {csn 4569  cop 4575  wf 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364
This theorem is referenced by:  fsets  16518  islindf4  20984
  Copyright terms: Public domain W3C validator