![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsnunf2 | Structured version Visualization version GIF version |
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunf2 | ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇) | |
2 | simp2 1082 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑆) | |
3 | neldifsnd 4355 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) | |
4 | simp3 1083 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) | |
5 | fsnunf 6492 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋 ∈ 𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) | |
6 | 1, 2, 3, 4, 5 | syl121anc 1371 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) |
7 | difsnid 4373 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) | |
8 | 7 | 3ad2ant2 1103 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) |
9 | 8 | feq2d 6069 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇)) |
10 | 6, 9 | mpbid 222 | 1 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ∪ cun 3605 {csn 4210 〈cop 4216 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 |
This theorem is referenced by: fsets 15938 islindf4 20225 |
Copyright terms: Public domain | W3C validator |