Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovd Structured version   Visualization version   GIF version

Theorem fsovd 38128
 Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
fsovd (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓   𝑥,𝐴,𝑎,𝑏   𝑦,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑓   𝑦,𝐵   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovd
StepHypRef Expression
1 fsovd.fs . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
21a1i 11 . 2 (𝜑𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)}))))
3 pweq 4159 . . . . . 6 (𝑏 = 𝐵 → 𝒫 𝑏 = 𝒫 𝐵)
43adantl 482 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 𝑏 = 𝒫 𝐵)
5 simpl 473 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
64, 5oveq12d 6665 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝒫 𝑏𝑚 𝑎) = (𝒫 𝐵𝑚 𝐴))
7 simpr 477 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑏 = 𝐵)
8 rabeq 3190 . . . . . 6 (𝑎 = 𝐴 → {𝑥𝑎𝑦 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
98adantr 481 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑥𝑎𝑦 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
107, 9mpteq12dv 4731 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}))
116, 10mpteq12dv 4731 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
1211adantl 482 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
13 fsovd.a . . 3 (𝜑𝐴𝑉)
1413elexd 3212 . 2 (𝜑𝐴 ∈ V)
15 fsovd.b . . 3 (𝜑𝐵𝑊)
1615elexd 3212 . 2 (𝜑𝐵 ∈ V)
17 ovex 6675 . . . 4 (𝒫 𝐵𝑚 𝐴) ∈ V
1817mptex 6483 . . 3 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})) ∈ V
1918a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})) ∈ V)
202, 12, 14, 16, 19ovmpt2d 6785 1 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1482   ∈ wcel 1989  {crab 2915  Vcvv 3198  𝒫 cpw 4156   ↦ cmpt 4727  ‘cfv 5886  (class class class)co 6647   ↦ cmpt2 6649   ↑𝑚 cmap 7854 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pr 4904 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652 This theorem is referenced by:  fsovrfovd  38129  fsovfvd  38130  fsovfd  38132  fsovcnvlem  38133
 Copyright terms: Public domain W3C validator