Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfd Structured version   Visualization version   GIF version

Theorem fsovfd 40236
Description: The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
Assertion
Ref Expression
fsovfd (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓   𝑥,𝐴,𝑎,𝑏   𝑦,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑓   𝑦,𝐵   𝜑,𝑎,𝑏,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovfd
StepHypRef Expression
1 fsovfvd.g . . 3 𝐺 = (𝐴𝑂𝐵)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
52, 3, 4fsovd 40232 . . 3 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
61, 5syl5eq 2865 . 2 (𝜑𝐺 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
7 ssrab2 4053 . . . . . . . 8 {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ⊆ 𝐴
87a1i 11 . . . . . . 7 (𝜑 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ⊆ 𝐴)
93, 8sselpwd 5221 . . . . . 6 (𝜑 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ∈ 𝒫 𝐴)
109adantr 481 . . . . 5 ((𝜑𝑦𝐵) → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ∈ 𝒫 𝐴)
1110fmpttd 6871 . . . 4 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}):𝐵⟶𝒫 𝐴)
123pwexd 5271 . . . . 5 (𝜑 → 𝒫 𝐴 ∈ V)
1312, 4elmapd 8409 . . . 4 (𝜑 → ((𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵) ↔ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}):𝐵⟶𝒫 𝐴))
1411, 13mpbird 258 . . 3 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵))
1514adantr 481 . 2 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵))
166, 15fmpt3d 6872 1 (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  wss 3933  𝒫 cpw 4535  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  m cmap 8395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397
This theorem is referenced by:  fsovcnvd  40238  fsovf1od  40240  clsneiel1  40336  neicvgmex  40345  neicvgel1  40347
  Copyright terms: Public domain W3C validator