MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6537
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6522 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6124 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6525 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 4026 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6523 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5573 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 586 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3980 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wss 3939   × cxp 5556  dom cdm 5558  ran crn 5559  Rel wrel 5563  wf 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-dm 5568  df-rn 5569  df-fun 6360  df-fn 6361  df-f 6362
This theorem is referenced by:  funssxp  6538  opelf  6542  dff2  6868  dff3  6869  fndifnfp  6941  fex2  7641  fabexg  7642  f2ndf  7819  f1o2ndf1  7821  mapex  8415  uniixp  8488  wdom2d  9047  rankfu  9309  dfac12lem2  9573  infmap2  9643  axdc3lem  9875  fnct  9962  tskcard  10206  ixxex  12752  imasvscafn  16813  imasvscaf  16815  fnmrc  16881  mrcfval  16882  isacs1i  16931  mreacs  16932  pjfval  20853  pjpm  20855  isngp2  23209  volf  24133  fgraphopab  39816  issmflem  43011
  Copyright terms: Public domain W3C validator