MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum0diag2 Structured version   Visualization version   GIF version

Theorem fsum0diag2 14446
Description: Two ways to express "the sum of 𝐴(𝑗, 𝑘) over the triangular region 0 ≤ 𝑗, 0 ≤ 𝑘, 𝑗 + 𝑘𝑁." (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1 (𝑥 = 𝑘𝐵 = 𝐴)
fsum0diag2.2 (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)
fsum0diag2.3 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsum0diag2 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘   𝐵,𝑘   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑗,𝑘)   𝐵(𝑥,𝑗)   𝐶(𝑗,𝑘)

Proof of Theorem fsum0diag2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 12390 . . . . . . 7 (𝑛 ∈ (0...(𝑁𝑗)) → ((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)))
21ad2antll 764 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)))
3 fsum0diag2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)
43expr 642 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑘 ∈ (0...(𝑁𝑗)) → 𝐴 ∈ ℂ))
54ralrimiv 2959 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑘 ∈ (0...(𝑁𝑗))𝐴 ∈ ℂ)
6 fsum0diag2.1 . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝐴)
76eleq1d 2683 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝐴 ∈ ℂ))
87cbvralv 3159 . . . . . . . 8 (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ ↔ ∀𝑘 ∈ (0...(𝑁𝑗))𝐴 ∈ ℂ)
95, 8sylibr 224 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
109adantrr 752 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
11 nfcsb1v 3531 . . . . . . . 8 𝑥((𝑁𝑗) − 𝑛) / 𝑥𝐵
1211nfel1 2775 . . . . . . 7 𝑥((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ
13 csbeq1a 3524 . . . . . . . 8 (𝑥 = ((𝑁𝑗) − 𝑛) → 𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
1413eleq1d 2683 . . . . . . 7 (𝑥 = ((𝑁𝑗) − 𝑛) → (𝐵 ∈ ℂ ↔ ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ))
1512, 14rspc 3289 . . . . . 6 (((𝑁𝑗) − 𝑛) ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ))
162, 10, 15sylc 65 . . . . 5 ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑛 ∈ (0...(𝑁𝑗)))) → ((𝑁𝑗) − 𝑛) / 𝑥𝐵 ∈ ℂ)
1716fsum0diag 14440 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
18 nfcsb1v 3531 . . . . . . . . . 10 𝑥𝑘 / 𝑥𝐵
1918nfel1 2775 . . . . . . . . 9 𝑥𝑘 / 𝑥𝐵 ∈ ℂ
20 csbeq1a 3524 . . . . . . . . . 10 (𝑥 = 𝑘𝐵 = 𝑘 / 𝑥𝐵)
2120eleq1d 2683 . . . . . . . . 9 (𝑥 = 𝑘 → (𝐵 ∈ ℂ ↔ 𝑘 / 𝑥𝐵 ∈ ℂ))
2219, 21rspc 3289 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → 𝑘 / 𝑥𝐵 ∈ ℂ))
239, 22mpan9 486 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 / 𝑥𝐵 ∈ ℂ)
24 csbeq1 3518 . . . . . . 7 (𝑘 = ((0 + (𝑁𝑗)) − 𝑛) → 𝑘 / 𝑥𝐵 = ((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵)
2523, 24fsumrev2 14445 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵)
26 elfz3nn0 12378 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
2726ad2antlr 762 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → 𝑁 ∈ ℕ0)
28 elfzelz 12287 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
2928ad2antlr 762 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → 𝑗 ∈ ℤ)
30 nn0cn 11249 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
31 zcn 11329 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
32 subcl 10227 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑁𝑗) ∈ ℂ)
3330, 31, 32syl2an 494 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑗 ∈ ℤ) → (𝑁𝑗) ∈ ℂ)
3427, 29, 33syl2anc 692 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → (𝑁𝑗) ∈ ℂ)
35 addid2 10166 . . . . . . . . . 10 ((𝑁𝑗) ∈ ℂ → (0 + (𝑁𝑗)) = (𝑁𝑗))
3634, 35syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → (0 + (𝑁𝑗)) = (𝑁𝑗))
3736oveq1d 6622 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → ((0 + (𝑁𝑗)) − 𝑛) = ((𝑁𝑗) − 𝑛))
3837csbeq1d 3522 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑛 ∈ (0...(𝑁𝑗))) → ((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
3938sumeq2dv 14370 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑛 ∈ (0...(𝑁𝑗))((0 + (𝑁𝑗)) − 𝑛) / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4025, 39eqtrd 2655 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁)) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
4140sumeq2dv 14370 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑁𝑛 ∈ (0...(𝑁𝑗))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
42 elfz3nn0 12378 . . . . . . . . . 10 (𝑛 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
4342adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
44 addid2 10166 . . . . . . . . 9 (𝑁 ∈ ℂ → (0 + 𝑁) = 𝑁)
4543, 30, 443syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝑁)) → (0 + 𝑁) = 𝑁)
4645oveq1d 6622 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝑁)) → ((0 + 𝑁) − 𝑛) = (𝑁𝑛))
4746oveq2d 6623 . . . . . 6 ((𝜑𝑛 ∈ (0...𝑁)) → (0...((0 + 𝑁) − 𝑛)) = (0...(𝑁𝑛)))
4846oveq1d 6622 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝑁)) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑛) − 𝑗))
4948adantr 481 . . . . . . . 8 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑛) − 𝑗))
5042ad2antlr 762 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑁 ∈ ℕ0)
51 elfzelz 12287 . . . . . . . . . 10 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ)
5251ad2antlr 762 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑛 ∈ ℤ)
53 elfzelz 12287 . . . . . . . . . 10 (𝑗 ∈ (0...(𝑁𝑛)) → 𝑗 ∈ ℤ)
5453adantl 482 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → 𝑗 ∈ ℤ)
55 zcn 11329 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
56 sub32 10262 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
5730, 55, 31, 56syl3an 1365 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ ∧ 𝑗 ∈ ℤ) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
5850, 52, 54, 57syl3anc 1323 . . . . . . . 8 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → ((𝑁𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
5949, 58eqtrd 2655 . . . . . . 7 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) = ((𝑁𝑗) − 𝑛))
6059csbeq1d 3522 . . . . . 6 (((𝜑𝑛 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...(𝑁𝑛))) → (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = ((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6147, 60sumeq12rdv 14374 . . . . 5 ((𝜑𝑛 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6261sumeq2dv 14370 . . . 4 (𝜑 → Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...(𝑁𝑛))((𝑁𝑗) − 𝑛) / 𝑥𝐵)
6317, 41, 623eqtr4d 2665 . . 3 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
64 fzfid 12715 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (0...𝑘) ∈ Fin)
65 elfzuz3 12284 . . . . . . . . . 10 (𝑗 ∈ (0...𝑘) → 𝑘 ∈ (ℤ𝑗))
6665adantl 482 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (ℤ𝑗))
67 elfzuz3 12284 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑘))
6867adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝑘))
6968adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ (ℤ𝑘))
70 elfzuzb 12281 . . . . . . . . 9 (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘 ∈ (ℤ𝑗) ∧ 𝑁 ∈ (ℤ𝑘)))
7166, 69, 70sylanbrc 697 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ (𝑗...𝑁))
72 elfzelz 12287 . . . . . . . . . 10 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℤ)
7372adantl 482 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℤ)
74 elfzel2 12285 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
7574ad2antlr 762 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑁 ∈ ℤ)
76 elfzelz 12287 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
7776ad2antlr 762 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℤ)
78 fzsubel 12322 . . . . . . . . 9 (((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗))))
7973, 75, 77, 73, 78syl22anc 1324 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 ∈ (𝑗...𝑁) ↔ (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗))))
8071, 79mpbid 222 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ((𝑗𝑗)...(𝑁𝑗)))
81 subid 10247 . . . . . . . . 9 (𝑗 ∈ ℂ → (𝑗𝑗) = 0)
8273, 31, 813syl 18 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑗𝑗) = 0)
8382oveq1d 6622 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑗𝑗)...(𝑁𝑗)) = (0...(𝑁𝑗)))
8480, 83eleqtrd 2700 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ (0...(𝑁𝑗)))
85 simpll 789 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝜑)
86 fzss2 12326 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑘) → (0...𝑘) ⊆ (0...𝑁))
8768, 86syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (0...𝑘) ⊆ (0...𝑁))
8887sselda 3584 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ (0...𝑁))
8985, 88, 9syl2anc 692 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ)
90 nfcsb1v 3531 . . . . . . . 8 𝑥(𝑘𝑗) / 𝑥𝐵
9190nfel1 2775 . . . . . . 7 𝑥(𝑘𝑗) / 𝑥𝐵 ∈ ℂ
92 csbeq1a 3524 . . . . . . . 8 (𝑥 = (𝑘𝑗) → 𝐵 = (𝑘𝑗) / 𝑥𝐵)
9392eleq1d 2683 . . . . . . 7 (𝑥 = (𝑘𝑗) → (𝐵 ∈ ℂ ↔ (𝑘𝑗) / 𝑥𝐵 ∈ ℂ))
9491, 93rspc 3289 . . . . . 6 ((𝑘𝑗) ∈ (0...(𝑁𝑗)) → (∀𝑥 ∈ (0...(𝑁𝑗))𝐵 ∈ ℂ → (𝑘𝑗) / 𝑥𝐵 ∈ ℂ))
9584, 89, 94sylc 65 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 ∈ ℂ)
9664, 95fsumcl 14400 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 ∈ ℂ)
97 oveq2 6615 . . . . 5 (𝑘 = ((0 + 𝑁) − 𝑛) → (0...𝑘) = (0...((0 + 𝑁) − 𝑛)))
98 oveq1 6614 . . . . . . 7 (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘𝑗) = (((0 + 𝑁) − 𝑛) − 𝑗))
9998csbeq1d 3522 . . . . . 6 (𝑘 = ((0 + 𝑁) − 𝑛) → (𝑘𝑗) / 𝑥𝐵 = (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10099adantr 481 . . . . 5 ((𝑘 = ((0 + 𝑁) − 𝑛) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 = (((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10197, 100sumeq12dv 14373 . . . 4 (𝑘 = ((0 + 𝑁) − 𝑛) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10296, 101fsumrev2 14445 . . 3 (𝜑 → Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑛 ∈ (0...𝑁𝑗 ∈ (0...((0 + 𝑁) − 𝑛))(((0 + 𝑁) − 𝑛) − 𝑗) / 𝑥𝐵)
10363, 102eqtr4d 2658 . 2 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵)
104 vex 3189 . . . . . 6 𝑘 ∈ V
105104, 6csbie 3541 . . . . 5 𝑘 / 𝑥𝐵 = 𝐴
106105a1i 11 . . . 4 ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗))) → 𝑘 / 𝑥𝐵 = 𝐴)
107106sumeq2dv 14370 . . 3 (𝑗 ∈ (0...𝑁) → Σ𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑘 ∈ (0...(𝑁𝑗))𝐴)
108107sumeq2i 14366 . 2 Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝑘 / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴
109 ovex 6635 . . . . . 6 (𝑘𝑗) ∈ V
110 fsum0diag2.2 . . . . . 6 (𝑥 = (𝑘𝑗) → 𝐵 = 𝐶)
111109, 110csbie 3541 . . . . 5 (𝑘𝑗) / 𝑥𝐵 = 𝐶
112111a1i 11 . . . 4 ((𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) / 𝑥𝐵 = 𝐶)
113112sumeq2dv 14370 . . 3 (𝑘 ∈ (0...𝑁) → Σ𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑗 ∈ (0...𝑘)𝐶)
114113sumeq2i 14366 . 2 Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)(𝑘𝑗) / 𝑥𝐵 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶
115103, 108, 1143eqtr3g 2678 1 (𝜑 → Σ𝑗 ∈ (0...𝑁𝑘 ∈ (0...(𝑁𝑗))𝐴 = Σ𝑘 ∈ (0...𝑁𝑗 ∈ (0...𝑘)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  csb 3515  wss 3556  cfv 5849  (class class class)co 6607  cc 9881  0cc0 9883   + caddc 9886  cmin 10213  0cn0 11239  cz 11324  cuz 11634  ...cfz 12271  Σcsu 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-clim 14156  df-sum 14354
This theorem is referenced by:  mertens  14546  plymullem1  23881
  Copyright terms: Public domain W3C validator