MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum2cn Structured version   Visualization version   GIF version

Theorem fsum2cn 23471
Description: Version of fsumcn 23470 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.)
Hypotheses
Ref Expression
fsumcn.3 𝐾 = (TopOpen‘ℂfld)
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsum2cn.7 (𝜑𝐿 ∈ (TopOn‘𝑌))
fsum2cn.8 ((𝜑𝑘𝐴) → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
Assertion
Ref Expression
fsum2cn (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑘,𝐽,𝑥,𝑦   𝑘,𝐿   𝜑,𝑘,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝑘,𝑌,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑘)   𝐿(𝑥,𝑦)

Proof of Theorem fsum2cn
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2975 . . . 4 𝑢Σ𝑘𝐴 𝐵
2 nfcv 2975 . . . 4 𝑣Σ𝑘𝐴 𝐵
3 nfcv 2975 . . . . 5 𝑥𝐴
4 nfcv 2975 . . . . . 6 𝑥𝑣
5 nfcsb1v 3905 . . . . . 6 𝑥𝑢 / 𝑥𝐵
64, 5nfcsbw 3907 . . . . 5 𝑥𝑣 / 𝑦𝑢 / 𝑥𝐵
73, 6nfsumw 15039 . . . 4 𝑥Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵
8 nfcv 2975 . . . . 5 𝑦𝐴
9 nfcsb1v 3905 . . . . 5 𝑦𝑣 / 𝑦𝑢 / 𝑥𝐵
108, 9nfsumw 15039 . . . 4 𝑦Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵
11 csbeq1a 3895 . . . . . 6 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
12 csbeq1a 3895 . . . . . 6 (𝑦 = 𝑣𝑢 / 𝑥𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
1311, 12sylan9eq 2874 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
1413sumeq2sdv 15053 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
151, 2, 7, 10, 14cbvmpo 7240 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) = (𝑢𝑋, 𝑣𝑌 ↦ Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
16 vex 3496 . . . . . . . 8 𝑢 ∈ V
17 vex 3496 . . . . . . . 8 𝑣 ∈ V
1816, 17op2ndd 7692 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
1918csbeq1d 3885 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵 = 𝑣 / 𝑦(1st𝑧) / 𝑥𝐵)
2016, 17op1std 7691 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
2120csbeq1d 3885 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥𝐵 = 𝑢 / 𝑥𝐵)
2221csbeq2dv 3888 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑣 / 𝑦(1st𝑧) / 𝑥𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2319, 22eqtrd 2854 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵 = 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2423sumeq2sdv 15053 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵 = Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2524mpompt 7258 . . 3 (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) = (𝑢𝑋, 𝑣𝑌 ↦ Σ𝑘𝐴 𝑣 / 𝑦𝑢 / 𝑥𝐵)
2615, 25eqtr4i 2845 . 2 (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵)
27 fsumcn.3 . . 3 𝐾 = (TopOpen‘ℂfld)
28 fsumcn.4 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
29 fsum2cn.7 . . . 4 (𝜑𝐿 ∈ (TopOn‘𝑌))
30 txtopon 22191 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
3128, 29, 30syl2anc 586 . . 3 (𝜑 → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
32 fsumcn.5 . . 3 (𝜑𝐴 ∈ Fin)
33 nfcv 2975 . . . . . 6 𝑢𝐵
34 nfcv 2975 . . . . . 6 𝑣𝐵
3533, 34, 6, 9, 13cbvmpo 7240 . . . . 5 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑢𝑋, 𝑣𝑌𝑣 / 𝑦𝑢 / 𝑥𝐵)
3623mpompt 7258 . . . . 5 (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) = (𝑢𝑋, 𝑣𝑌𝑣 / 𝑦𝑢 / 𝑥𝐵)
3735, 36eqtr4i 2845 . . . 4 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵)
38 fsum2cn.8 . . . 4 ((𝜑𝑘𝐴) → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
3937, 38eqeltrrid 2916 . . 3 ((𝜑𝑘𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
4027, 31, 32, 39fsumcn 23470 . 2 (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘𝐴 (2nd𝑧) / 𝑦(1st𝑧) / 𝑥𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
4126, 40eqeltrid 2915 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ Σ𝑘𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  csb 3881  cop 4565  cmpt 5137   × cxp 5546  cfv 6348  (class class class)co 7148  cmpo 7150  1st c1st 7679  2nd c2nd 7680  Fincfn 8501  Σcsu 15034  TopOpenctopn 16687  fldccnfld 20537  TopOnctopon 21510   Cn ccn 21824   ×t ctx 22160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cn 21827  df-cnp 21828  df-tx 22162  df-hmeo 22355  df-xms 22922  df-ms 22923  df-tms 22924
This theorem is referenced by:  dipcn  28489
  Copyright terms: Public domain W3C validator