MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcn Structured version   Visualization version   GIF version

Theorem fsumcn 23405
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcn.3 𝐾 = (TopOpen‘ℂfld)
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsumcn.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3986 . 2 𝐴𝐴
2 fsumcn.5 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3989 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 15033 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54mpteq2dv 5153 . . . . . . 7 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
65eleq1d 2894 . . . . . 6 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
73, 6imbi12d 346 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))))
87imbi2d 342 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))))
9 sseq1 3989 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
10 sumeq1 15033 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
1110mpteq2dv 5153 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
1211eleq1d 2894 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
139, 12imbi12d 346 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))))
1413imbi2d 342 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))))
15 sseq1 3989 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
16 sumeq1 15033 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1716mpteq2dv 5153 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1817eleq1d 2894 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
1915, 18imbi12d 346 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
2019imbi2d 342 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
21 sseq1 3989 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
22 sumeq1 15033 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2322mpteq2dv 5153 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
2423eleq1d 2894 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
2521, 24imbi12d 346 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
2625imbi2d 342 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))))
27 sum0 15066 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
2827mpteq2i 5149 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
29 fsumcn.4 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
30 fsumcn.3 . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
3130cnfldtopon 23318 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘ℂ))
33 0cnd 10622 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
3429, 32, 33cnmptc 22198 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
3528, 34eqeltrid 2914 . . . . 5 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
3635a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
37 ssun1 4145 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
38 sstr 3972 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑦𝐴)
3937, 38mpan 686 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
41 simplr 765 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ¬ 𝑧𝑦)
42 disjsn 4639 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4341, 42sylibr 235 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∩ {𝑧}) = ∅)
44 eqidd 2819 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
452ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝐴 ∈ Fin)
46 simprl 767 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
4745, 46ssfid 8729 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ∈ Fin)
48 simplll 771 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
4946sselda 3964 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
50 simplrr 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
5129adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
5231a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
53 fsumcn.6 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
54 cnf2 21785 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
5551, 52, 53, 54syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
56 eqid 2818 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
5756fmpt 6866 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
5855, 57sylibr 235 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
59 rsp 3202 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
6160imp 407 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
6248, 49, 50, 61syl21anc 833 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
6343, 44, 47, 62fsumsplit 15085 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
64 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
6564unssbd 4161 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → {𝑧} ⊆ 𝐴)
66 vex 3495 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
6766snss 4710 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
6865, 67sylibr 235 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑧𝐴)
6968adantrr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧𝐴)
7060impancom 452 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
7170ralrimiv 3178 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
7271ad2ant2rl 745 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
73 nfcsb1v 3904 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐵
7473nfel1 2991 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
75 csbeq1a 3894 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
7675eleq1d 2894 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
7774, 76rspc 3608 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
7869, 72, 77sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
79 sumsns 15093 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8069, 78, 79syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8180oveq2d 7161 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8263, 81eqtrd 2853 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8382anassrs 468 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8483mpteq2dva 5152 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8584adantrr 713 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
86 nfcv 2974 . . . . . . . . . . . . 13 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
87 nfcv 2974 . . . . . . . . . . . . . . 15 𝑥𝑦
88 nfcsb1v 3904 . . . . . . . . . . . . . . 15 𝑥𝑤 / 𝑥𝐵
8987, 88nfsumw 15035 . . . . . . . . . . . . . 14 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
90 nfcv 2974 . . . . . . . . . . . . . 14 𝑥 +
91 nfcv 2974 . . . . . . . . . . . . . . 15 𝑥𝑧
9291, 88nfcsbw 3906 . . . . . . . . . . . . . 14 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
9389, 90, 92nfov 7175 . . . . . . . . . . . . 13 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
94 csbeq1a 3894 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
9594sumeq2sdv 15049 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
9694csbeq2dv 3887 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
9795, 96oveq12d 7163 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
9886, 93, 97cbvmpt 5158 . . . . . . . . . . . 12 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
9985, 98syl6eq 2869 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
10029ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝐽 ∈ (TopOn‘𝑋))
101 nfcv 2974 . . . . . . . . . . . . . 14 𝑤Σ𝑘𝑦 𝐵
102101, 89, 95cbvmpt 5158 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
103 simprr 769 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
104102, 103eqeltrrid 2915 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
105 nfcv 2974 . . . . . . . . . . . . . 14 𝑤𝑧 / 𝑘𝐵
106105, 92, 96cbvmpt 5158 . . . . . . . . . . . . 13 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
10768adantrr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝑧𝐴)
10853ralrimiva 3179 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
109108ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
110 nfcv 2974 . . . . . . . . . . . . . . . . 17 𝑘𝑋
111110, 73nfmpt 5154 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
112111nfel1 2991 . . . . . . . . . . . . . . 15 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
11375mpteq2dv 5153 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
114113eleq1d 2894 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
115112, 114rspc 3608 . . . . . . . . . . . . . 14 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
116107, 109, 115sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
117106, 116eqeltrrid 2915 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
11830addcn 23400 . . . . . . . . . . . . 13 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
119118a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
120100, 104, 117, 119cnmpt12f 22202 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
12199, 120eqeltrd 2910 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
122121exp32 421 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
123122a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
12440, 123syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
125124expcom 414 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
126125adantl 482 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
127126a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
1288, 14, 20, 26, 36, 127findcard2s 8747 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
1292, 128mpcom 38 . 2 (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
1301, 129mpi 20 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  csb 3880  cun 3931  cin 3932  wss 3933  c0 4288  {csn 4557  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  Fincfn 8497  cc 10523  0cc0 10525   + caddc 10528  Σcsu 15030  TopOpenctopn 16683  fldccnfld 20473  TopOnctopon 21446   Cn ccn 21760   ×t ctx 22096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859
This theorem is referenced by:  fsum2cn  23406  lebnumlem2  23493  plycn  24778  psercn2  24938  knoppcnlem11  33739  fsumcnf  41155
  Copyright terms: Public domain W3C validator