MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg3 Structured version   Visualization version   GIF version

Theorem fsumcvg3 15089
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsumcvg3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3995 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑛)))
21rexbidv 3300 . . 3 (𝐴 = ∅ → (∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛) ↔ ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛)))
3 fsumcvg3.4 . . . . . . 7 (𝜑𝐴𝑍)
43adantr 483 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑍)
5 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
64, 5sseqtrdi 4020 . . . . 5 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (ℤ𝑀))
7 ltso 10724 . . . . . 6 < Or ℝ
8 fsumcvg3.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
98adantr 483 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
10 simpr 487 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
11 uzssz 12267 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
12 zssre 11991 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3979 . . . . . . . . 9 (ℤ𝑀) ⊆ ℝ
145, 13eqsstri 4004 . . . . . . . 8 𝑍 ⊆ ℝ
154, 14sstrdi 3982 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
169, 10, 153jca 1124 . . . . . 6 ((𝜑𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ))
17 fisupcl 8936 . . . . . 6 (( < Or ℝ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
187, 16, 17sylancr 589 . . . . 5 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
196, 18sseldd 3971 . . . 4 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ (ℤ𝑀))
20 fimaxre2 11589 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2115, 9, 20syl2anc 586 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2215, 10, 213jca 1124 . . . . . . . 8 ((𝜑𝐴 ≠ ∅) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘))
23 suprub 11605 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
2422, 23sylan 582 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
256sselda 3970 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
2611, 19sseldi 3968 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
2726adantr 483 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
28 elfz5 12903 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ sup(𝐴, ℝ, < ) ∈ ℤ) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
2925, 27, 28syl2anc 586 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
3024, 29mpbird 259 . . . . . 6 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3130ex 415 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3231ssrdv 3976 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
33 oveq2 7167 . . . . . 6 (𝑛 = sup(𝐴, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup(𝐴, ℝ, < )))
3433sseq2d 4002 . . . . 5 (𝑛 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
3534rspcev 3626 . . . 4 ((sup(𝐴, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
3619, 32, 35syl2anc 586 . . 3 ((𝜑𝐴 ≠ ∅) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
37 fsumcvg3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
38 uzid 12261 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3937, 38syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
40 0ss 4353 . . . 4 ∅ ⊆ (𝑀...𝑀)
41 oveq2 7167 . . . . . 6 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
4241sseq2d 4002 . . . . 5 (𝑛 = 𝑀 → (∅ ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑀)))
4342rspcev 3626 . . . 4 ((𝑀 ∈ (ℤ𝑀) ∧ ∅ ⊆ (𝑀...𝑀)) → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
4439, 40, 43sylancl 588 . . 3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
452, 36, 44pm2.61ne 3105 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
465eleq2i 2907 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
47 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4846, 47sylan2br 596 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4948adantlr 713 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
50 simprl 769 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
51 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5251adantlr 713 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
53 simprr 771 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
5449, 50, 52, 53fsumcvg2 15087 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
55 climrel 14852 . . . 4 Rel ⇝
5655releldmi 5821 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5754, 56syl 17 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5845, 57rexlimddv 3294 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  wss 3939  c0 4294  ifcif 4470   class class class wbr 5069   Or wor 5476  dom cdm 5558  cfv 6358  (class class class)co 7159  Fincfn 8512  supcsup 8907  cc 10538  cr 10539  0cc0 10540   + caddc 10543   < clt 10678  cle 10679  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372  cli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848
This theorem is referenced by:  isumless  15203  radcnv0  25007  fsumcvg4  31197
  Copyright terms: Public domain W3C validator