Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdscom Structured version   Visualization version   GIF version

Theorem fsumdvdscom 24811
 Description: A double commutation of divisor sums based on fsumdvdsdiag 24810. Note that 𝐴 depends on both 𝑗 and 𝑘. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
fsumdvdscom.1 (𝜑𝑁 ∈ ℕ)
fsumdvdscom.2 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
fsumdvdscom.3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumdvdscom (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑗   𝑗,𝑘,𝑚,𝑥,𝑁   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑘,𝑚)

Proof of Theorem fsumdvdscom
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2761 . . 3 𝑢Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴
2 nfcv 2761 . . . 4 𝑗{𝑥 ∈ ℕ ∣ 𝑥𝑢}
3 nfcsb1v 3530 . . . 4 𝑗𝑢 / 𝑗𝐴
42, 3nfsum 14355 . . 3 𝑗Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
5 breq2 4617 . . . . 5 (𝑗 = 𝑢 → (𝑥𝑗𝑥𝑢))
65rabbidv 3177 . . . 4 (𝑗 = 𝑢 → {𝑥 ∈ ℕ ∣ 𝑥𝑗} = {𝑥 ∈ ℕ ∣ 𝑥𝑢})
7 csbeq1a 3523 . . . . 5 (𝑗 = 𝑢𝐴 = 𝑢 / 𝑗𝐴)
87adantr 481 . . . 4 ((𝑗 = 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}) → 𝐴 = 𝑢 / 𝑗𝐴)
96, 8sumeq12dv 14370 . . 3 (𝑗 = 𝑢 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴)
101, 4, 9cbvsumi 14361 . 2 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
11 breq2 4617 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → (𝑥𝑢𝑥 ∥ (𝑁 / 𝑣)))
1211rabbidv 3177 . . . . 5 (𝑢 = (𝑁 / 𝑣) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})
13 csbeq1 3517 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1413adantr 481 . . . . 5 ((𝑢 = (𝑁 / 𝑣) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1512, 14sumeq12dv 14370 . . . 4 (𝑢 = (𝑁 / 𝑣) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
16 fzfid 12712 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
17 fsumdvdscom.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
18 dvdsssfz1 14964 . . . . . 6 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1917, 18syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
20 ssfi 8124 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
2116, 19, 20syl2anc 692 . . . 4 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
22 eqid 2621 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
23 eqid 2621 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
2422, 23dvdsflip 14963 . . . . 5 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
2517, 24syl 17 . . . 4 (𝜑 → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
26 oveq2 6612 . . . . . 6 (𝑧 = 𝑣 → (𝑁 / 𝑧) = (𝑁 / 𝑣))
27 ovex 6632 . . . . . 6 (𝑁 / 𝑧) ∈ V
2826, 23, 27fvmpt3i 6244 . . . . 5 (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
2928adantl 482 . . . 4 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
30 fzfid 12712 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑢) ∈ Fin)
31 ssrab2 3666 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
32 simpr 477 . . . . . . . 8 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
3331, 32sseldi 3581 . . . . . . 7 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
34 dvdsssfz1 14964 . . . . . . 7 (𝑢 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
3533, 34syl 17 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
36 ssfi 8124 . . . . . 6 (((1...𝑢) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢)) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
3730, 35, 36syl2anc 692 . . . . 5 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
38 fsumdvdscom.3 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
3938ralrimivva 2965 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ)
40 nfv 1840 . . . . . . . . 9 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ
413nfel1 2775 . . . . . . . . . 10 𝑗𝑢 / 𝑗𝐴 ∈ ℂ
422, 41nfral 2940 . . . . . . . . 9 𝑗𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ
437eleq1d 2683 . . . . . . . . . 10 (𝑗 = 𝑢 → (𝐴 ∈ ℂ ↔ 𝑢 / 𝑗𝐴 ∈ ℂ))
446, 43raleqbidv 3141 . . . . . . . . 9 (𝑗 = 𝑢 → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ))
4540, 42, 44cbvral 3155 . . . . . . . 8 (∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4639, 45sylib 208 . . . . . . 7 (𝜑 → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4746r19.21bi 2927 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4847r19.21bi 2927 . . . . 5 (((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 ∈ ℂ)
4937, 48fsumcl 14397 . . . 4 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
5015, 21, 25, 29, 49fsumf1o 14387 . . 3 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
51 dvdsdivcl 14962 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5217, 51sylan 488 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5346adantr 481 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
5413eleq1d 2683 . . . . . . . . 9 (𝑢 = (𝑁 / 𝑣) → (𝑢 / 𝑗𝐴 ∈ ℂ ↔ (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5512, 54raleqbidv 3141 . . . . . . . 8 (𝑢 = (𝑁 / 𝑣) → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5655rspcv 3291 . . . . . . 7 ((𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5752, 53, 56sylc 65 . . . . . 6 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5857r19.21bi 2927 . . . . 5 (((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5958anasss 678 . . . 4 ((𝜑 ∧ (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
6017, 59fsumdvdsdiag 24810 . . 3 (𝜑 → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴)
61 oveq2 6612 . . . . . . 7 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) = (𝑁 / ((𝑁 / 𝑘) / 𝑚)))
6261csbeq1d 3521 . . . . . 6 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) / 𝑗𝐴 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
63 fzfid 12712 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑘)) ∈ Fin)
64 dvdsdivcl 14962 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
6531, 64sseldi 3581 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
6617, 65sylan 488 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
67 dvdsssfz1 14964 . . . . . . . 8 ((𝑁 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
6866, 67syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
69 ssfi 8124 . . . . . . 7 (((1...(𝑁 / 𝑘)) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
7063, 68, 69syl2anc 692 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
71 eqid 2621 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}
72 eqid 2621 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))
7371, 72dvdsflip 14963 . . . . . . 7 ((𝑁 / 𝑘) ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
7466, 73syl 17 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
75 oveq2 6612 . . . . . . . 8 (𝑧 = 𝑚 → ((𝑁 / 𝑘) / 𝑧) = ((𝑁 / 𝑘) / 𝑚))
76 ovex 6632 . . . . . . . 8 ((𝑁 / 𝑘) / 𝑧) ∈ V
7775, 72, 76fvmpt3i 6244 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7877adantl 482 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7917fsumdvdsdiaglem 24809 . . . . . . . 8 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})))
8059ex 450 . . . . . . . 8 (𝜑 → ((𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
8179, 80syld 47 . . . . . . 7 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
8281impl 649 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
8362, 70, 74, 78, 82fsumf1o 14387 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
84 ovex 6632 . . . . . . . 8 (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ∈ V
8584a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ∈ V)
86 nncn 10972 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87 nnne0 10997 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8886, 87jca 554 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8917, 88syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
9089ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
9190simpld 475 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑁 ∈ ℂ)
92 elrabi 3342 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑘 ∈ ℕ)
9392adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ ℕ)
9493adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑘 ∈ ℕ)
95 nncn 10972 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
96 nnne0 10997 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
9795, 96jca 554 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
9894, 97syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
99 elrabi 3342 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → 𝑚 ∈ ℕ)
10099adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑚 ∈ ℕ)
101 nncn 10972 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
102 nnne0 10997 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
103101, 102jca 554 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
104100, 103syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
105 divdiv1 10680 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
10691, 98, 104, 105syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
107106oveq2d 6620 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑁 / (𝑁 / (𝑘 · 𝑚))))
108 nnmulcl 10987 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑘 · 𝑚) ∈ ℕ)
10993, 99, 108syl2an 494 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 · 𝑚) ∈ ℕ)
110 nncn 10972 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ∈ ℂ)
111 nnne0 10997 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ≠ 0)
112110, 111jca 554 . . . . . . . . . . . . 13 ((𝑘 · 𝑚) ∈ ℕ → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
113109, 112syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
114 ddcan 10683 . . . . . . . . . . . 12 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0)) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
11590, 113, 114syl2anc 692 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
116107, 115eqtrd 2655 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑘 · 𝑚))
117116eqeq2d 2631 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ↔ 𝑗 = (𝑘 · 𝑚)))
118117biimpa 501 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝑗 = (𝑘 · 𝑚))
119 fsumdvdscom.2 . . . . . . . 8 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
120118, 119syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝐴 = 𝐵)
12185, 120csbied 3541 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = 𝐵)
122121sumeq2dv 14367 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12383, 122eqtrd 2655 . . . 4 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
124123sumeq2dv 14367 . . 3 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12550, 60, 1243eqtrd 2659 . 2 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12610, 125syl5eq 2667 1 (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  {crab 2911  Vcvv 3186  ⦋csb 3514   ⊆ wss 3555   class class class wbr 4613   ↦ cmpt 4673  –1-1-onto→wf1o 5846  ‘cfv 5847  (class class class)co 6604  Fincfn 7899  ℂcc 9878  0cc0 9880  1c1 9881   · cmul 9885   / cdiv 10628  ℕcn 10964  ...cfz 12268  Σcsu 14350   ∥ cdvds 14907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908 This theorem is referenced by:  logsqvma  25131
 Copyright terms: Public domain W3C validator