Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsdiaglem Structured version   Visualization version   GIF version

Theorem fsumdvdsdiaglem 24809
 Description: A "diagonal commutation" of divisor sums analogous to fsum0diag 14437. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
fsumdvdsdiag.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fsumdvdsdiaglem (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem fsumdvdsdiaglem
StepHypRef Expression
1 elrabi 3342 . . . . 5 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∈ ℕ)
21ad2antll 764 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℕ)
3 breq1 4616 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 ∥ (𝑁 / 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
43elrab 3346 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∥ (𝑁 / 𝑗)))
54simprbi 480 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∥ (𝑁 / 𝑗))
65ad2antll 764 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∥ (𝑁 / 𝑗))
7 fsumdvdsdiag.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
87adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℕ)
9 simprl 793 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
10 dvdsdivcl 14962 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
118, 9, 10syl2anc 692 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
12 breq1 4616 . . . . . . . 8 (𝑥 = (𝑁 / 𝑗) → (𝑥𝑁 ↔ (𝑁 / 𝑗) ∥ 𝑁))
1312elrab 3346 . . . . . . 7 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝑗) ∈ ℕ ∧ (𝑁 / 𝑗) ∥ 𝑁))
1413simprbi 480 . . . . . 6 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∥ 𝑁)
1511, 14syl 17 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∥ 𝑁)
162nnzd 11425 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℤ)
17 elrabi 3342 . . . . . . . 8 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∈ ℕ)
1811, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℕ)
1918nnzd 11425 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℤ)
208nnzd 11425 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℤ)
21 dvdstr 14942 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 ∥ (𝑁 / 𝑗) ∧ (𝑁 / 𝑗) ∥ 𝑁) → 𝑘𝑁))
2216, 19, 20, 21syl3anc 1323 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 ∥ (𝑁 / 𝑗) ∧ (𝑁 / 𝑗) ∥ 𝑁) → 𝑘𝑁))
236, 15, 22mp2and 714 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘𝑁)
24 breq1 4616 . . . . 5 (𝑥 = 𝑘 → (𝑥𝑁𝑘𝑁))
2524elrab 3346 . . . 4 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑁))
262, 23, 25sylanbrc 697 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
27 elrabi 3342 . . . . 5 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑗 ∈ ℕ)
2827ad2antrl 763 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℕ)
2928nnzd 11425 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℤ)
3028nnne0d 11009 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ≠ 0)
31 dvdsmulcr 14935 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ (𝑗 ∈ ℤ ∧ 𝑗 ≠ 0)) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
3216, 19, 29, 30, 31syl112anc 1327 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
336, 32mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗))
348nncnd 10980 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℂ)
3528nncnd 10980 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℂ)
3634, 35, 30divcan1d 10746 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = 𝑁)
372nncnd 10980 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℂ)
382nnne0d 11009 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ≠ 0)
3934, 37, 38divcan2d 10747 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · (𝑁 / 𝑘)) = 𝑁)
4036, 39eqtr4d 2658 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = (𝑘 · (𝑁 / 𝑘)))
4133, 40breqtrd 4639 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)))
42 ssrab2 3666 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
43 dvdsdivcl 14962 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
448, 26, 43syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4542, 44sseldi 3581 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℕ)
4645nnzd 11425 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℤ)
47 dvdscmulr 14934 . . . . . 6 ((𝑗 ∈ ℤ ∧ (𝑁 / 𝑘) ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑘 ≠ 0)) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4829, 46, 16, 38, 47syl112anc 1327 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4941, 48mpbid 222 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∥ (𝑁 / 𝑘))
50 breq1 4616 . . . . 5 (𝑥 = 𝑗 → (𝑥 ∥ (𝑁 / 𝑘) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
5150elrab 3346 . . . 4 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ (𝑁 / 𝑘)))
5228, 49, 51sylanbrc 697 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
5326, 52jca 554 . 2 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))
5453ex 450 1 (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∈ wcel 1987   ≠ wne 2790  {crab 2911   class class class wbr 4613  (class class class)co 6604  0cc0 9880   · cmul 9885   / cdiv 10628  ℕcn 10964  ℤcz 11321   ∥ cdvds 14907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-dvds 14908 This theorem is referenced by:  fsumdvdsdiag  24810  fsumdvdscom  24811
 Copyright terms: Public domain W3C validator