MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 24821
Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
dvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
dvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
dvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐷,𝑖   𝑥,𝑀   𝑥,𝑁   𝑖,𝑗,𝑘,𝑋   𝐵,𝑗   𝐶,𝑗,𝑘   𝑖,𝑌,𝑗,𝑘   𝑖,𝑍,𝑗   𝑥,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12712 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
2 dvdsmulf1o.x . . . . 5 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
3 dvdsmulf1o.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 dvdsssfz1 14964 . . . . . 6 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
53, 4syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
62, 5syl5eqss 3628 . . . 4 (𝜑𝑋 ⊆ (1...𝑀))
7 ssfi 8124 . . . 4 (((1...𝑀) ∈ Fin ∧ 𝑋 ⊆ (1...𝑀)) → 𝑋 ∈ Fin)
81, 6, 7syl2anc 692 . . 3 (𝜑𝑋 ∈ Fin)
9 fzfid 12712 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
10 dvdsmulf1o.y . . . . . 6 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
11 dvdsmulf1o.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
12 dvdsssfz1 14964 . . . . . . 7 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1311, 12syl 17 . . . . . 6 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1410, 13syl5eqss 3628 . . . . 5 (𝜑𝑌 ⊆ (1...𝑁))
15 ssfi 8124 . . . . 5 (((1...𝑁) ∈ Fin ∧ 𝑌 ⊆ (1...𝑁)) → 𝑌 ∈ Fin)
169, 14, 15syl2anc 692 . . . 4 (𝜑𝑌 ∈ Fin)
17 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1816, 17fsumcl 14397 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
19 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
208, 18, 19fsummulc1 14445 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
2116adantr 481 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
2217adantlr 750 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
2321, 19, 22fsummulc2 14444 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
24 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
2524anassrs 679 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2625sumeq2dv 14367 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2723, 26eqtrd 2655 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2827sumeq2dv 14367 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
29 fveq2 6148 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
30 df-ov 6607 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
3129, 30syl6eqr 2673 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
3231csbeq1d 3521 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
33 ovex 6632 . . . . . 6 (𝑗 · 𝑘) ∈ V
34 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
3533, 34csbie 3540 . . . . 5 (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷
3632, 35syl6eq 2671 . . . 4 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = 𝐷)
3719adantrr 752 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
3817adantrl 751 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
3937, 38mulcld 10004 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
4024, 39eqeltrrd 2699 . . . 4 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
4136, 8, 16, 40fsumxp 14431 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
42 nfcv 2761 . . . . 5 𝑤𝐶
43 nfcsb1v 3530 . . . . 5 𝑖𝑤 / 𝑖𝐶
44 csbeq1a 3523 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
4542, 43, 44cbvsumi 14361 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
46 csbeq1 3517 . . . . 5 (𝑤 = ( · ‘𝑧) → 𝑤 / 𝑖𝐶 = ( · ‘𝑧) / 𝑖𝐶)
47 xpfi 8175 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
488, 16, 47syl2anc 692 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
49 dvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
50 dvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
513, 11, 49, 2, 10, 50dvdsmulf1o 24820 . . . . 5 (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
52 fvres 6164 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5352adantl 482 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5440ralrimivva 2965 . . . . . . . 8 (𝜑 → ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5536eleq1d 2683 . . . . . . . . 9 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
5655ralxp 5223 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5754, 56sylibr 224 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
58 ax-mulf 9960 . . . . . . . . . 10 · :(ℂ × ℂ)⟶ℂ
59 ffn 6002 . . . . . . . . . 10 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
6058, 59ax-mp 5 . . . . . . . . 9 · Fn (ℂ × ℂ)
61 ssrab2 3666 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ ℕ
622, 61eqsstri 3614 . . . . . . . . . . 11 𝑋 ⊆ ℕ
63 nnsscn 10969 . . . . . . . . . . 11 ℕ ⊆ ℂ
6462, 63sstri 3592 . . . . . . . . . 10 𝑋 ⊆ ℂ
65 ssrab2 3666 . . . . . . . . . . . 12 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
6610, 65eqsstri 3614 . . . . . . . . . . 11 𝑌 ⊆ ℕ
6766, 63sstri 3592 . . . . . . . . . 10 𝑌 ⊆ ℂ
68 xpss12 5186 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
6964, 67, 68mp2an 707 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
7046eleq1d 2683 . . . . . . . . . 10 (𝑤 = ( · ‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
7170ralima 6452 . . . . . . . . 9 (( · Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
7260, 69, 71mp2an 707 . . . . . . . 8 (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
73 df-ima 5087 . . . . . . . . . 10 ( · “ (𝑋 × 𝑌)) = ran ( · ↾ (𝑋 × 𝑌))
74 f1ofo 6101 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
75 forn 6075 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7651, 74, 753syl 18 . . . . . . . . . 10 (𝜑 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7773, 76syl5eq 2667 . . . . . . . . 9 (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍)
7877raleqdv 3133 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7972, 78syl5bbr 274 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
8057, 79mpbid 222 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
8180r19.21bi 2927 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
8246, 48, 51, 53, 81fsumf1o 14387 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8345, 82syl5eq 2667 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8441, 83eqtr4d 2658 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
8520, 28, 843eqtrd 2659 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  csb 3514  wss 3555  cop 4154   class class class wbr 4613   × cxp 5072  ran crn 5075  cres 5076  cima 5077   Fn wfn 5842  wf 5843  ontowfo 5845  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  1c1 9881   · cmul 9885  cn 10964  ...cfz 12268  Σcsu 14350  cdvds 14907   gcd cgcd 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-gcd 15141
This theorem is referenced by:  sgmmul  24826  dchrisum0fmul  25095
  Copyright terms: Public domain W3C validator