MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsmul Structured version   Visualization version   GIF version

Theorem fsumdvdsmul 25774
Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
dvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
dvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
dvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐷,𝑖   𝑥,𝑀   𝑥,𝑁   𝑖,𝑗,𝑘,𝑋   𝐵,𝑗   𝐶,𝑗,𝑘   𝑖,𝑌,𝑗,𝑘   𝑖,𝑍,𝑗   𝑥,𝑖,𝑗,𝑘   𝜑,𝑖,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13344 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
2 dvdsmulf1o.x . . . . 5 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
3 dvdsmulf1o.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 dvdsssfz1 15670 . . . . . 6 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
53, 4syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ⊆ (1...𝑀))
62, 5eqsstrid 4017 . . . 4 (𝜑𝑋 ⊆ (1...𝑀))
71, 6ssfid 8743 . . 3 (𝜑𝑋 ∈ Fin)
8 fzfid 13344 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
9 dvdsmulf1o.y . . . . . 6 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
10 dvdsmulf1o.2 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
11 dvdsssfz1 15670 . . . . . . 7 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1210, 11syl 17 . . . . . 6 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
139, 12eqsstrid 4017 . . . . 5 (𝜑𝑌 ⊆ (1...𝑁))
148, 13ssfid 8743 . . . 4 (𝜑𝑌 ∈ Fin)
15 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1614, 15fsumcl 15092 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
17 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
187, 16, 17fsummulc1 15142 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
1914adantr 483 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
2015adantlr 713 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
2119, 17, 20fsummulc2 15141 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
22 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
2322anassrs 470 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2423sumeq2dv 15062 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2521, 24eqtrd 2858 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2625sumeq2dv 15062 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
27 fveq2 6672 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
28 df-ov 7161 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
2927, 28syl6eqr 2876 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
3029csbeq1d 3889 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
31 ovex 7191 . . . . . 6 (𝑗 · 𝑘) ∈ V
32 fsumdvdsmul.7 . . . . . 6 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
3331, 32csbie 3920 . . . . 5 (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷
3430, 33syl6eq 2874 . . . 4 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = 𝐷)
3517adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
3615adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
3735, 36mulcld 10663 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
3822, 37eqeltrrd 2916 . . . 4 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
3934, 7, 14, 38fsumxp 15129 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
40 nfcv 2979 . . . . 5 𝑤𝐶
41 nfcsb1v 3909 . . . . 5 𝑖𝑤 / 𝑖𝐶
42 csbeq1a 3899 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
4340, 41, 42cbvsumi 15056 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
44 csbeq1 3888 . . . . 5 (𝑤 = ( · ‘𝑧) → 𝑤 / 𝑖𝐶 = ( · ‘𝑧) / 𝑖𝐶)
45 xpfi 8791 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
467, 14, 45syl2anc 586 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
47 dvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
48 dvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
493, 10, 47, 2, 9, 48dvdsmulf1o 25773 . . . . 5 (𝜑 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
50 fvres 6691 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5150adantl 484 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (( · ↾ (𝑋 × 𝑌))‘𝑧) = ( · ‘𝑧))
5238ralrimivva 3193 . . . . . . . 8 (𝜑 → ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5334eleq1d 2899 . . . . . . . . 9 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
5453ralxp 5714 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 𝐷 ∈ ℂ)
5552, 54sylibr 236 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
56 ax-mulf 10619 . . . . . . . . . 10 · :(ℂ × ℂ)⟶ℂ
57 ffn 6516 . . . . . . . . . 10 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
5856, 57ax-mp 5 . . . . . . . . 9 · Fn (ℂ × ℂ)
592ssrab3 4059 . . . . . . . . . . 11 𝑋 ⊆ ℕ
60 nnsscn 11645 . . . . . . . . . . 11 ℕ ⊆ ℂ
6159, 60sstri 3978 . . . . . . . . . 10 𝑋 ⊆ ℂ
629ssrab3 4059 . . . . . . . . . . 11 𝑌 ⊆ ℕ
6362, 60sstri 3978 . . . . . . . . . 10 𝑌 ⊆ ℂ
64 xpss12 5572 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
6561, 63, 64mp2an 690 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
6644eleq1d 2899 . . . . . . . . . 10 (𝑤 = ( · ‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
6766ralima 7002 . . . . . . . . 9 (( · Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ))
6858, 65, 67mp2an 690 . . . . . . . 8 (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
69 df-ima 5570 . . . . . . . . . 10 ( · “ (𝑋 × 𝑌)) = ran ( · ↾ (𝑋 × 𝑌))
70 f1ofo 6624 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
71 forn 6595 . . . . . . . . . . 11 (( · ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7249, 70, 713syl 18 . . . . . . . . . 10 (𝜑 → ran ( · ↾ (𝑋 × 𝑌)) = 𝑍)
7369, 72syl5eq 2870 . . . . . . . . 9 (𝜑 → ( · “ (𝑋 × 𝑌)) = 𝑍)
7473raleqdv 3417 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ( · “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7568, 74syl5bbr 287 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
7655, 75mpbid 234 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
7776r19.21bi 3210 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
7844, 46, 49, 51, 77fsumf1o 15082 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
7943, 78syl5eq 2870 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
8039, 79eqtr4d 2861 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
8118, 26, 803eqtrd 2862 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  csb 3885  wss 3938  cop 4575   class class class wbr 5068   × cxp 5555  ran crn 5558  cres 5559  cima 5560   Fn wfn 6352  wf 6353  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  1c1 10540   · cmul 10544  cn 11640  ...cfz 12895  Σcsu 15044  cdvds 15609   gcd cgcd 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-gcd 15846
This theorem is referenced by:  sgmmul  25779  dchrisum0fmul  26084
  Copyright terms: Public domain W3C validator