MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumf1o Structured version   Visualization version   GIF version

Theorem fsumf1o 14243
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1o.2 (𝜑𝐶 ∈ Fin)
fsumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1o (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 14241 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
2 fsumf1o.3 . . . . . . . 8 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1oeq2 6022 . . . . . . . 8 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
42, 3syl5ibcom 233 . . . . . . 7 (𝜑 → (𝐶 = ∅ → 𝐹:∅–1-1-onto𝐴))
54imp 443 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
6 f1ofo 6038 . . . . . 6 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
7 fo00 6065 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
87simprbi 478 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
95, 6, 83syl 18 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
109sumeq1d 14221 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
11 simpr 475 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
1211sumeq1d 14221 . . . . 5 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = Σ𝑛 ∈ ∅ 𝐷)
13 sum0 14241 . . . . 5 Σ𝑛 ∈ ∅ 𝐷 = 0
1412, 13syl6eq 2655 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = 0)
151, 10, 143eqtr4a 2665 . . 3 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
1615ex 448 . 2 (𝜑 → (𝐶 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
17 fveq2 6084 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → (𝐹𝑚) = (𝐹‘(𝑓𝑛)))
1817fveq2d 6088 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
19 simprl 789 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (#‘𝐶) ∈ ℕ)
20 simprr 791 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)
21 f1of 6031 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
222, 21syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2322ffvelrnda 6248 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
24 fsumf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
25 eqid 2605 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
2624, 25fmptd 6273 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2726ffvelrnda 6248 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2823, 27syldan 485 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2928adantlr 746 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
302adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝐹:𝐶1-1-onto𝐴)
31 f1oco 6053 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(#‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴)
3230, 20, 31syl2anc 690 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴)
33 f1of 6031 . . . . . . . . . . 11 ((𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(#‘𝐶))⟶𝐴)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(#‘𝐶))⟶𝐴)
35 fvco3 6166 . . . . . . . . . 10 (((𝐹𝑓):(1...(#‘𝐶))⟶𝐴𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3634, 35sylan 486 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
37 f1of 6031 . . . . . . . . . . . 12 (𝑓:(1...(#‘𝐶))–1-1-onto𝐶𝑓:(1...(#‘𝐶))⟶𝐶)
3837ad2antll 760 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(#‘𝐶))⟶𝐶)
39 fvco3 6166 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐶))⟶𝐶𝑛 ∈ (1...(#‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4038, 39sylan 486 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4140fveq2d 6088 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4236, 41eqtrd 2639 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4318, 19, 20, 29, 42fsum 14240 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(#‘𝐶)))
44 fsumf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4522ffvelrnda 6248 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4644, 45eqeltrrd 2684 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
47 fsumf1o.1 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
4847, 25fvmpti 6171 . . . . . . . . . . . . 13 (𝐺𝐴 → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
4946, 48syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
5044fveq2d 6088 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
51 eqid 2605 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5251fvmpt2i 6180 . . . . . . . . . . . . 13 (𝑛𝐶 → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5352adantl 480 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5449, 50, 533eqtr4rd 2650 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5554ralrimiva 2944 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
56 nffvmpt1 6092 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
5756nfeq1 2759 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
58 fveq2 6084 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
59 fveq2 6084 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
6059fveq2d 6088 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6158, 60eqeq12d 2620 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6257, 61rspc 3271 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6355, 62mpan9 484 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6463adantlr 746 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6564sumeq2dv 14223 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
66 fveq2 6084 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6726adantr 479 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6867ffvelrnda 6248 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
6966, 19, 32, 68, 36fsum 14240 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(#‘𝐶)))
7043, 65, 693eqtr4rd 2650 . . . . . 6 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
71 sumfc 14229 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
72 sumfc 14229 . . . . . 6 Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷
7370, 71, 723eqtr3g 2662 . . . . 5 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
7473expr 640 . . . 4 ((𝜑 ∧ (#‘𝐶) ∈ ℕ) → (𝑓:(1...(#‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7574exlimdv 1846 . . 3 ((𝜑 ∧ (#‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7675expimpd 626 . 2 (𝜑 → (((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
77 fsumf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
78 fz1f1o 14230 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)))
7977, 78syl 17 . 2 (𝜑 → (𝐶 = ∅ ∨ ((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)))
8016, 76, 79mpjaod 394 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382   = wceq 1474  wex 1694  wcel 1975  wral 2891  c0 3869  cmpt 4633   I cid 4934  ccom 5028  wf 5782  ontowfo 5784  1-1-ontowf1o 5785  cfv 5786  (class class class)co 6523  Fincfn 7814  cc 9786  0cc0 9788  1c1 9789   + caddc 9791  cn 10863  ...cfz 12148  seqcseq 12614  #chash 12930  Σcsu 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207
This theorem is referenced by:  fsumss  14245  fsum2dlem  14285  fsumcnv  14288  fsumrev  14295  fsumshft  14296  ackbijnn  14341  incexclem  14349  phisum  15275  ovoliunlem1  22990  ovolicc2lem4  23008  itg1addlem4  23185  itg1mulc  23190  basellem3  24522  basellem5  24524  fsumdvdscom  24624  dvdsflsumcom  24627  musum  24630  fsumdvdsmul  24634  sgmppw  24635  fsumvma  24651  dchrsum2  24706  sumdchr2  24708  dchrisumlem1  24891  dchrisum0flblem1  24910  dchrisum0fno1  24913  eulerpartlemgs2  29571  fsumf1of  38441  sumnnodd  38497  dvnprodlem2  38637
  Copyright terms: Public domain W3C validator