Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumge1 Structured version   Visualization version   GIF version

Theorem fsumge1 14456
 Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumge1.4 (𝑘 = 𝑀𝐵 = 𝐶)
fsumge1.5 (𝜑𝑀𝐴)
Assertion
Ref Expression
fsumge1 (𝜑𝐶 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑀   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumge1
StepHypRef Expression
1 fsumge1.5 . . 3 (𝜑𝑀𝐴)
2 fsumge0.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
32recnd 10012 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
43ralrimiva 2960 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5 fsumge1.4 . . . . . 6 (𝑘 = 𝑀𝐵 = 𝐶)
65eleq1d 2683 . . . . 5 (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
76rspcv 3291 . . . 4 (𝑀𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝐶 ∈ ℂ))
81, 4, 7sylc 65 . . 3 (𝜑𝐶 ∈ ℂ)
95sumsn 14405 . . 3 ((𝑀𝐴𝐶 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = 𝐶)
101, 8, 9syl2anc 692 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = 𝐶)
11 fsumge0.1 . . 3 (𝜑𝐴 ∈ Fin)
12 fsumge0.3 . . 3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
131snssd 4309 . . 3 (𝜑 → {𝑀} ⊆ 𝐴)
1411, 2, 12, 13fsumless 14455 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 ≤ Σ𝑘𝐴 𝐵)
1510, 14eqbrtrrd 4637 1 (𝜑𝐶 ≤ Σ𝑘𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  {csn 4148   class class class wbr 4613  Fincfn 7899  ℂcc 9878  ℝcr 9879  0cc0 9880   ≤ cle 10019  Σcsu 14350 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351 This theorem is referenced by:  lebnumlem1  22668  rrxdstprj1  23100  eulerpartlemgc  30202  eulerpartlemb  30208  rrndstprj1  33258  dvnprodlem1  39464
 Copyright terms: Public domain W3C validator