MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumiun Structured version   Visualization version   GIF version

Theorem fsumiun 14475
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
fsumiun.4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumiun (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiun
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3608 . 2 𝐴𝐴
2 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3610 . . . . . 6 (𝑢 = ∅ → (𝑢𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 4505 . . . . . . . . 9 (𝑢 = ∅ → 𝑥𝑢 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 4548 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5syl6eq 2676 . . . . . . . 8 (𝑢 = ∅ → 𝑥𝑢 𝐵 = ∅)
76sumeq1d 14360 . . . . . . 7 (𝑢 = ∅ → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 ∈ ∅ 𝐶)
8 sumeq1 14348 . . . . . . 7 (𝑢 = ∅ → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)
97, 8eqeq12d 2641 . . . . . 6 (𝑢 = ∅ → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
103, 9imbi12d 334 . . . . 5 (𝑢 = ∅ → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)))
1110imbi2d 330 . . . 4 (𝑢 = ∅ → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))))
12 sseq1 3610 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝐴𝑧𝐴))
13 iuneq1 4505 . . . . . . . 8 (𝑢 = 𝑧 𝑥𝑢 𝐵 = 𝑥𝑧 𝐵)
1413sumeq1d 14360 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝑧 𝐵𝐶)
15 sumeq1 14348 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)
1614, 15eqeq12d 2641 . . . . . 6 (𝑢 = 𝑧 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
1712, 16imbi12d 334 . . . . 5 (𝑢 = 𝑧 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)))
1817imbi2d 330 . . . 4 (𝑢 = 𝑧 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))))
19 sseq1 3610 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (𝑢𝐴 ↔ (𝑧 ∪ {𝑤}) ⊆ 𝐴))
20 iuneq1 4505 . . . . . . . 8 (𝑢 = (𝑧 ∪ {𝑤}) → 𝑥𝑢 𝐵 = 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
2120sumeq1d 14360 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)
22 sumeq1 14348 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)
2321, 22eqeq12d 2641 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
2419, 23imbi12d 334 . . . . 5 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
2524imbi2d 330 . . . 4 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
26 sseq1 3610 . . . . . 6 (𝑢 = 𝐴 → (𝑢𝐴𝐴𝐴))
27 iuneq1 4505 . . . . . . . 8 (𝑢 = 𝐴 𝑥𝑢 𝐵 = 𝑥𝐴 𝐵)
2827sumeq1d 14360 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
29 sumeq1 14348 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
3028, 29eqeq12d 2641 . . . . . 6 (𝑢 = 𝐴 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
3126, 30imbi12d 334 . . . . 5 (𝑢 = 𝐴 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
3231imbi2d 330 . . . 4 (𝑢 = 𝐴 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))))
33 sum0 14380 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
34 sum0 14380 . . . . . 6 Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3533, 34eqtr4i 2651 . . . . 5 Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
37 id 22 . . . . . . . . . 10 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
3837unssad 3773 . . . . . . . . 9 ((𝑧 ∪ {𝑤}) ⊆ 𝐴𝑧𝐴)
3938imim1i 63 . . . . . . . 8 ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
40 oveq1 6612 . . . . . . . . . . 11 𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
41 nfcv 2767 . . . . . . . . . . . . . . . . 17 𝑧𝐵
42 nfcsb1v 3535 . . . . . . . . . . . . . . . . 17 𝑥𝑧 / 𝑥𝐵
43 csbeq1a 3528 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4441, 42, 43cbviun 4528 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑤}𝐵 = 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵
45 vex 3194 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
46 csbeq1 3522 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵)
4745, 46iunxsn 4574 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵
4844, 47eqtri 2648 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑤}𝐵 = 𝑤 / 𝑥𝐵
4948ineq2i 3794 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
50 fsumiun.3 . . . . . . . . . . . . . . . 16 (𝜑Disj 𝑥𝐴 𝐵)
5150ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥𝐴 𝐵)
5238adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧𝐴)
53 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
5453unssbd 3774 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → {𝑤} ⊆ 𝐴)
55 simplr 791 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
56 disjsn 4221 . . . . . . . . . . . . . . . 16 ((𝑧 ∩ {𝑤}) = ∅ ↔ ¬ 𝑤𝑧)
5755, 56sylibr 224 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
58 disjiun 4608 . . . . . . . . . . . . . . 15 ((Disj 𝑥𝐴 𝐵 ∧ (𝑧𝐴 ∧ {𝑤} ⊆ 𝐴 ∧ (𝑧 ∩ {𝑤}) = ∅)) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
5951, 52, 54, 57, 58syl13anc 1325 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
6049, 59syl5eqr 2674 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
61 iunxun 4576 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵)
6248uneq2i 3747 . . . . . . . . . . . . . . 15 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6361, 62eqtri 2648 . . . . . . . . . . . . . 14 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6463a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵))
652ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝐴 ∈ Fin)
66 ssfi 8125 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
6765, 53, 66syl2anc 692 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
68 fsumiun.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
6968ralrimiva 2965 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7069ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 𝐵 ∈ Fin)
71 ssralv 3650 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin))
7253, 70, 71sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
73 iunfi 8199 . . . . . . . . . . . . . 14 (((𝑧 ∪ {𝑤}) ∈ Fin ∧ ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
7467, 72, 73syl2anc 692 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
75 iunss1 4503 . . . . . . . . . . . . . . . 16 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
7675adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
7776sselda 3588 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑘 𝑥𝐴 𝐵)
78 eliun 4495 . . . . . . . . . . . . . . . 16 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
79 fsumiun.4 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
8079rexlimdvaa 3030 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8180ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8278, 81syl5bi 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑘 𝑥𝐴 𝐵𝐶 ∈ ℂ))
8382imp 445 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
8477, 83syldan 487 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝐶 ∈ ℂ)
8560, 64, 74, 84fsumsplit 14399 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
86 eqidd 2627 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) = (𝑧 ∪ {𝑤}))
8753sselda 3588 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
8879anassrs 679 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
8968, 88fsumcl 14392 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9089ralrimiva 2965 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
9190ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
9291r19.21bi 2932 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9387, 92syldan 487 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9457, 86, 67, 93fsumsplit 14399 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶))
95 nfcv 2767 . . . . . . . . . . . . . . . 16 𝑧Σ𝑘𝐵 𝐶
96 nfcv 2767 . . . . . . . . . . . . . . . . 17 𝑥𝐶
9742, 96nfsum 14350 . . . . . . . . . . . . . . . 16 𝑥Σ𝑘 𝑧 / 𝑥𝐵𝐶
9843sumeq1d 14360 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑧 / 𝑥𝐵𝐶)
9995, 97, 98cbvsumi 14356 . . . . . . . . . . . . . . 15 Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶
10045snss 4291 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴 ↔ {𝑤} ⊆ 𝐴)
10154, 100sylibr 224 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤𝐴)
102 nfcsb1v 3535 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤 / 𝑥𝐵
103102, 96nfsum 14350 . . . . . . . . . . . . . . . . . . 19 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶
104103nfel1 2781 . . . . . . . . . . . . . . . . . 18 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ
105 csbeq1a 3528 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
106105sumeq1d 14360 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
107106eleq1d 2688 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (Σ𝑘𝐵 𝐶 ∈ ℂ ↔ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
108104, 107rspc 3294 . . . . . . . . . . . . . . . . 17 (𝑤𝐴 → (∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
109101, 91, 108sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ)
11046sumeq1d 14360 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → Σ𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
111110sumsn 14400 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ V ∧ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
11245, 109, 111sylancr 694 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
11399, 112syl5eq 2672 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
114113oveq2d 6621 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
11594, 114eqtrd 2660 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
11685, 115eqeq12d 2641 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 ↔ (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶)))
11740, 116syl5ibr 236 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
118117ex 450 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑤𝑧) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
119118a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑤𝑧) → (((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
12039, 119syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑤𝑧) → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
121120expcom 451 . . . . . 6 𝑤𝑧 → (𝜑 → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
122121a2d 29 . . . . 5 𝑤𝑧 → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
123122adantl 482 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
12411, 18, 25, 32, 36, 123findcard2s 8146 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
1252, 124mpcom 38 . 2 (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
1261, 125mpi 20 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  Vcvv 3191  csb 3519  cun 3558  cin 3559  wss 3560  c0 3896  {csn 4153   ciun 4490  Disj wdisj 4588  (class class class)co 6605  Fincfn 7900  cc 9879  0cc0 9881   + caddc 9884  Σcsu 14345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346
This theorem is referenced by:  hashiun  14476  incexc2  14490  musum  24812  fsumiunss  39198
  Copyright terms: Public domain W3C validator