MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc2 Structured version   Visualization version   GIF version

Theorem fsummulc2 15142
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1 (𝜑𝐴 ∈ Fin)
fsummulc2.2 (𝜑𝐶 ∈ ℂ)
fsummulc2.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsummulc2 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsummulc2
Dummy variables 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4 (𝜑𝐶 ∈ ℂ)
21mul01d 10842 . . 3 (𝜑 → (𝐶 · 0) = 0)
3 sumeq1 15048 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
4 sum0 15081 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
53, 4syl6eq 2875 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
65oveq2d 7175 . . . 4 (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = (𝐶 · 0))
7 sumeq1 15048 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = Σ𝑘 ∈ ∅ (𝐶 · 𝐵))
8 sum0 15081 . . . . 5 Σ𝑘 ∈ ∅ (𝐶 · 𝐵) = 0
97, 8syl6eq 2875 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = 0)
106, 9eqeq12d 2840 . . 3 (𝐴 = ∅ → ((𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵) ↔ (𝐶 · 0) = 0))
112, 10syl5ibrcom 249 . 2 (𝜑 → (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
12 addcl 10622 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑛 + 𝑚) ∈ ℂ)
1312adantl 484 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑛 + 𝑚) ∈ ℂ)
141adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐶 ∈ ℂ)
15 adddi 10629 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚)))
16153expb 1116 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚)))
1714, 16sylan 582 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑛 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝐶 · (𝑛 + 𝑚)) = ((𝐶 · 𝑛) + (𝐶 · 𝑚)))
18 simprl 769 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
19 nnuz 12284 . . . . . . . . 9 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2926 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
21 fsummulc2.3 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2221fmpttd 6882 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2322ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑘𝐴𝐵):𝐴⟶ℂ)
24 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
2524adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
26 f1of 6618 . . . . . . . . . . 11 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2725, 26syl 17 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
28 fco 6534 . . . . . . . . . 10 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
2923, 27, 28syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
30 simpr 487 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → 𝑛 ∈ (1...(♯‘𝐴)))
3129, 30ffvelrnd 6855 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ)
3227, 30ffvelrnd 6855 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝑓𝑛) ∈ 𝐴)
33 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑘𝐴)
341adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3534, 21mulcld 10664 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐶 · 𝐵) ∈ ℂ)
36 eqid 2824 . . . . . . . . . . . . . . 15 (𝑘𝐴 ↦ (𝐶 · 𝐵)) = (𝑘𝐴 ↦ (𝐶 · 𝐵))
3736fvmpt2 6782 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · 𝐵))
3833, 35, 37syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · 𝐵))
39 eqid 2824 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4039fvmpt2 6782 . . . . . . . . . . . . . . 15 ((𝑘𝐴𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4133, 21, 40syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐵)‘𝑘) = 𝐵)
4241oveq2d 7175 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) = (𝐶 · 𝐵))
4338, 42eqtr4d 2862 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)))
4443ralrimiva 3185 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)))
4544ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)))
46 nffvmpt1 6684 . . . . . . . . . . . 12 𝑘((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛))
47 nfcv 2980 . . . . . . . . . . . . 13 𝑘𝐶
48 nfcv 2980 . . . . . . . . . . . . 13 𝑘 ·
49 nffvmpt1 6684 . . . . . . . . . . . . 13 𝑘((𝑘𝐴𝐵)‘(𝑓𝑛))
5047, 48, 49nfov 7189 . . . . . . . . . . . 12 𝑘(𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))
5146, 50nfeq 2994 . . . . . . . . . . 11 𝑘((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))
52 fveq2 6673 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
53 fveq2 6673 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑘) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
5453oveq2d 7175 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑛) → (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛))))
5552, 54eqeq12d 2840 . . . . . . . . . . 11 (𝑘 = (𝑓𝑛) → (((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) ↔ ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))))
5651, 55rspc 3614 . . . . . . . . . 10 ((𝑓𝑛) ∈ 𝐴 → (∀𝑘𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑘) = (𝐶 · ((𝑘𝐴𝐵)‘𝑘)) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛)))))
5732, 45, 56sylc 65 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛))))
5826ad2antll 727 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
59 fvco3 6763 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
6058, 59sylan 582 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
61 fvco3 6763 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6258, 61sylan 582 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
6362oveq2d 7175 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐶 · (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛)) = (𝐶 · ((𝑘𝐴𝐵)‘(𝑓𝑛))))
6457, 60, 633eqtr4d 2869 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = (𝐶 · (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛)))
6513, 17, 20, 31, 64seqdistr 13424 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , ((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓))‘(♯‘𝐴)) = (𝐶 · (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
66 fveq2 6673 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
6735fmpttd 6882 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
6867adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
6968ffvelrnda 6854 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) ∈ ℂ)
7066, 18, 24, 69, 60fsum 15080 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = (seq1( + , ((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓))‘(♯‘𝐴)))
71 fveq2 6673 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
7222adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
7372ffvelrnda 6854 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7471, 18, 24, 73, 62fsum 15080 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
7574oveq2d 7175 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴))))
7665, 70, 753eqtr4rd 2870 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚))
77 sumfc 15069 . . . . . . 7 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
7877oveq2i 7170 . . . . . 6 (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · Σ𝑘𝐴 𝐵)
79 sumfc 15069 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵)
8076, 78, 793eqtr3g 2882 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
8180expr 459 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
8281exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
8382expimpd 456 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
84 fsummulc2.1 . . 3 (𝜑𝐴 ∈ Fin)
85 fz1f1o 15070 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8684, 85syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
8711, 83, 86mpjaod 856 1 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1536  wex 1779  wcel 2113  wral 3141  c0 4294  cmpt 5149  ccom 5562  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  Fincfn 8512  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cn 11641  cuz 12246  ...cfz 12895  seqcseq 13372  chash 13693  Σcsu 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046
This theorem is referenced by:  fsummulc1  15143  fsumneg  15145  fsum2mul  15147  incexc2  15196  pwdif  15226  mertens  15245  binomrisefac  15399  fsumkthpow  15413  eirrlem  15560  pwp1fsum  15745  csbren  24005  trirn  24006  itg1addlem4  24303  itg1addlem5  24304  itg1mulc  24308  elqaalem3  24913  advlogexp  25241  fsumharmonic  25592  basellem8  25668  muinv  25773  fsumdvdsmul  25775  logfaclbnd  25801  dchrsum2  25847  sumdchr2  25849  rplogsumlem2  26064  rpvmasumlem  26066  dchrmusum2  26073  dchrvmasumlem1  26074  dchrvmasum2lem  26075  dchrvmasumlem2  26077  dchrvmasumiflem1  26080  rpvmasum2  26091  dchrisum0lem2  26097  mudivsum  26109  mulogsum  26111  mulog2sumlem1  26113  mulog2sumlem2  26114  mulog2sumlem3  26115  vmalogdivsum2  26117  logsqvma  26121  selberglem1  26124  selberglem2  26125  selberg  26127  selberg3lem1  26136  selberg4lem1  26139  selberg4  26140  selbergr  26147  selberg3r  26148  selberg34r  26150  pntsval2  26155  pntrlog2bndlem2  26157  pntrlog2bndlem3  26158  pntrlog2bndlem4  26159  pntrlog2bndlem6  26162  pntpbnd2  26166  pntlemk  26185  axsegconlem9  26714  ax5seglem1  26717  ax5seglem2  26718  ax5seglem9  26726  hgt750lemf  31928  hgt750lemb  31931  knoppndvlem11  33865  jm2.22  39598  dvnprodlem2  42238  stoweidlem26  42318  stirlinglem12  42377  fourierdlem83  42481  etransclem46  42572  altgsumbcALT  44408  aacllem  44909
  Copyright terms: Public domain W3C validator