MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumo1 Structured version   Visualization version   GIF version

Theorem fsumo1 15169
Description: The finite sum of eventually bounded functions (where the index set 𝐵 does not depend on 𝑥) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumo1.1 (𝜑𝐴 ⊆ ℝ)
fsumo1.2 (𝜑𝐵 ∈ Fin)
fsumo1.3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
fsumo1.4 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
fsumo1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem fsumo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3991 . 2 𝐵𝐵
2 fsumo1.2 . . 3 (𝜑𝐵 ∈ Fin)
3 sseq1 3994 . . . . . 6 (𝑤 = ∅ → (𝑤𝐵 ↔ ∅ ⊆ 𝐵))
4 sumeq1 15047 . . . . . . . . 9 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
5 sum0 15080 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐶 = 0
64, 5syl6eq 2874 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = 0)
76mpteq2dv 5164 . . . . . . 7 (𝑤 = ∅ → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ 0))
87eleq1d 2899 . . . . . 6 (𝑤 = ∅ → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))
93, 8imbi12d 347 . . . . 5 (𝑤 = ∅ → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))))
109imbi2d 343 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))))
11 sseq1 3994 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
12 sumeq1 15047 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐶 = Σ𝑘𝑦 𝐶)
1312mpteq2dv 5164 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
1413eleq1d 2899 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))
1511, 14imbi12d 347 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))))
1615imbi2d 343 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))))
17 sseq1 3994 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵))
18 sumeq1 15047 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
1918mpteq2dv 5164 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
2019eleq1d 2899 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))
2117, 20imbi12d 347 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
2221imbi2d 343 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
23 sseq1 3994 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐵𝐵𝐵))
24 sumeq1 15047 . . . . . . . 8 (𝑤 = 𝐵 → Σ𝑘𝑤 𝐶 = Σ𝑘𝐵 𝐶)
2524mpteq2dv 5164 . . . . . . 7 (𝑤 = 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶))
2625eleq1d 2899 . . . . . 6 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))
2723, 26imbi12d 347 . . . . 5 (𝑤 = 𝐵 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))))
2827imbi2d 343 . . . 4 (𝑤 = 𝐵 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))))
29 fsumo1.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
30 0cn 10635 . . . . . 6 0 ∈ ℂ
31 o1const 14978 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 0 ∈ ℂ) → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))
3229, 30, 31sylancl 588 . . . . 5 (𝜑 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))
3332a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))
34 ssun1 4150 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 sstr 3977 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦𝐵)
3634, 35mpan 688 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐵𝑦𝐵)
3736imim1i 63 . . . . . . . 8 ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))
38 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧𝑦)
39 disjsn 4649 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4038, 39sylibr 236 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
4140adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∩ {𝑧}) = ∅)
42 eqidd 2824 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
432adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin)
44 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵)
4543, 44ssfid 8743 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin)
4645adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin)
4744sselda 3969 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
4847adantlr 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
49 fsumo1.3 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
5049anass1rs 653 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶𝑉)
51 fsumo1.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝑂(1))
5250, 51o1mptrcl 14981 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
5352an32s 650 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5453adantllr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5548, 54syldan 593 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ)
5641, 42, 46, 55fsumsplit 15099 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶))
57 nfcv 2979 . . . . . . . . . . . . . . . . . . 19 𝑤𝐶
58 nfcsb1v 3909 . . . . . . . . . . . . . . . . . . 19 𝑘𝑤 / 𝑘𝐶
59 csbeq1a 3899 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑤𝐶 = 𝑤 / 𝑘𝐶)
6057, 58, 59cbvsumi 15056 . . . . . . . . . . . . . . . . . 18 Σ𝑘 ∈ {𝑧}𝐶 = Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶
6144unssbd 4166 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵)
62 vex 3499 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
6362snss 4720 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 ↔ {𝑧} ⊆ 𝐵)
6461, 63sylibr 236 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧𝐵)
6564adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧𝐵)
6654ralrimiva 3184 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℂ)
67 nfcsb1v 3909 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑧 / 𝑘𝐶
6867nfel1 2996 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐶 ∈ ℂ
69 csbeq1a 3899 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
7069eleq1d 2899 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ 𝑧 / 𝑘𝐶 ∈ ℂ))
7168, 70rspc 3613 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑧 / 𝑘𝐶 ∈ ℂ))
7265, 66, 71sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧 / 𝑘𝐶 ∈ ℂ)
73 csbeq1 3888 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7473sumsn 15103 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐵𝑧 / 𝑘𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7565, 72, 74syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7660, 75syl5eq 2870 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = 𝑧 / 𝑘𝐶)
7776oveq2d 7174 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
7856, 77eqtrd 2858 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
7978mpteq2dva 5163 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
8029adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ⊆ ℝ)
81 reex 10630 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
8281ssex 5227 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
8380, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ∈ V)
84 sumex 15046 . . . . . . . . . . . . . . . 16 Σ𝑘𝑦 𝐶 ∈ V
8584a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘𝑦 𝐶 ∈ V)
86 eqidd 2824 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
87 eqidd 2824 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
8883, 85, 72, 86, 87offval2 7428 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
8979, 88eqtr4d 2861 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)))
9089adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)))
91 id 22 . . . . . . . . . . . . 13 ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))
9251ralrimiva 3184 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1))
9392adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1))
94 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑘𝐴
9594, 67nfmpt 5165 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝐴𝑧 / 𝑘𝐶)
9695nfel1 2996 . . . . . . . . . . . . . . 15 𝑘(𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)
9769mpteq2dv 5164 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝐴𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
9897eleq1d 2899 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝐴𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)))
9996, 98rspc 3613 . . . . . . . . . . . . . 14 (𝑧𝐵 → (∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)))
10064, 93, 99sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1))
101 o1add 14972 . . . . . . . . . . . . 13 (((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) ∧ (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) ∈ 𝑂(1))
10291, 100, 101syl2anr 598 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) ∈ 𝑂(1))
10390, 102eqeltrd 2915 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))
104103ex 415 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))
105104expr 459 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
106105a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
10737, 106syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
108107expcom 416 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
109108a2d 29 . . . . 5 𝑧𝑦 → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
110109adantl 484 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
11110, 16, 22, 28, 33, 110findcard2s 8761 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))))
1122, 111mpcom 38 . 2 (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))
1131, 112mpi 20 1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  csb 3885  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569  cmpt 5148  (class class class)co 7158  f cof 7409  Fincfn 8511  cc 10537  cr 10538  0cc0 10539   + caddc 10542  𝑂(1)co1 14845  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-o1 14849  df-sum 15045
This theorem is referenced by:  rpvmasum2  26090
  Copyright terms: Public domain W3C validator