MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumparts Structured version   Visualization version   GIF version

Theorem fsumparts 14729
Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumparts.b (𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))
fsumparts.c (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))
fsumparts.d (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))
fsumparts.e (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))
fsumparts.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumparts.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumparts.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
Assertion
Ref Expression
fsumparts (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑗,𝑉   𝑘,𝑊   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)   𝑉(𝑘)   𝑊(𝑗)   𝑋(𝑗)   𝑌(𝑗)   𝑍(𝑗)

Proof of Theorem fsumparts
StepHypRef Expression
1 sum0 14643 . . . 4 Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)) = 0
2 0m0e0 11314 . . . 4 (0 − 0) = 0
31, 2eqtr4i 2777 . . 3 Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)) = (0 − 0)
4 simpr 479 . . . . . 6 ((𝜑𝑁 = 𝑀) → 𝑁 = 𝑀)
54oveq2d 6821 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
6 fzo0 12678 . . . . 5 (𝑀..^𝑀) = ∅
75, 6syl6eq 2802 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
87sumeq1d 14622 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)))
9 fsumparts.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzfz1 12533 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
12 eqtr3 2773 . . . . . . . . . . . 12 ((𝑘 = 𝑀𝑁 = 𝑀) → 𝑘 = 𝑁)
13 fsumparts.e . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))
14 oveq12 6814 . . . . . . . . . . . 12 ((𝐴 = 𝐸𝑉 = 𝑍) → (𝐴 · 𝑉) = (𝐸 · 𝑍))
1512, 13, 143syl 18 . . . . . . . . . . 11 ((𝑘 = 𝑀𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐸 · 𝑍))
16 fsumparts.d . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))
17 oveq12 6814 . . . . . . . . . . . . 13 ((𝐴 = 𝐷𝑉 = 𝑌) → (𝐴 · 𝑉) = (𝐷 · 𝑌))
1816, 17syl 17 . . . . . . . . . . . 12 (𝑘 = 𝑀 → (𝐴 · 𝑉) = (𝐷 · 𝑌))
1918adantr 472 . . . . . . . . . . 11 ((𝑘 = 𝑀𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐷 · 𝑌))
2015, 19eqeq12d 2767 . . . . . . . . . 10 ((𝑘 = 𝑀𝑁 = 𝑀) → ((𝐴 · 𝑉) = (𝐴 · 𝑉) ↔ (𝐸 · 𝑍) = (𝐷 · 𝑌)))
2120pm5.74da 725 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉)) ↔ (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌))))
22 eqidd 2753 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉))
2321, 22vtoclg 3398 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌)))
2423imp 444 . . . . . . 7 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌))
2511, 24sylan 489 . . . . . 6 ((𝜑𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌))
2625oveq1d 6820 . . . . 5 ((𝜑𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = ((𝐷 · 𝑌) − (𝐷 · 𝑌)))
27 fsumparts.2 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
2827ralrimiva 3096 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
2916simpld 477 . . . . . . . . . . 11 (𝑘 = 𝑀𝐴 = 𝐷)
3029eleq1d 2816 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
3130rspcv 3437 . . . . . . . . 9 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐷 ∈ ℂ))
3211, 28, 31sylc 65 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
33 fsumparts.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
3433ralrimiva 3096 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ)
3516simprd 482 . . . . . . . . . . 11 (𝑘 = 𝑀𝑉 = 𝑌)
3635eleq1d 2816 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝑉 ∈ ℂ ↔ 𝑌 ∈ ℂ))
3736rspcv 3437 . . . . . . . . 9 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ → 𝑌 ∈ ℂ))
3811, 34, 37sylc 65 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
3932, 38mulcld 10244 . . . . . . 7 (𝜑 → (𝐷 · 𝑌) ∈ ℂ)
4039subidd 10564 . . . . . 6 (𝜑 → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0)
4140adantr 472 . . . . 5 ((𝜑𝑁 = 𝑀) → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0)
4226, 41eqtrd 2786 . . . 4 ((𝜑𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = 0)
437sumeq1d 14622 . . . . 5 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = Σ𝑗 ∈ ∅ ((𝐶𝐵) · 𝑋))
44 sum0 14643 . . . . 5 Σ𝑗 ∈ ∅ ((𝐶𝐵) · 𝑋) = 0
4543, 44syl6eq 2802 . . . 4 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = 0)
4642, 45oveq12d 6823 . . 3 ((𝜑𝑁 = 𝑀) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)) = (0 − 0))
473, 8, 463eqtr4a 2812 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
48 simpr 479 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
49 eluzel2 11876 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
509, 49syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
5150adantr 472 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
52 fzp1ss 12577 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
5351, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
5453sselda 3736 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
5527, 33mulcld 10244 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
5655adantlr 753 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
5754, 56syldan 488 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
5813, 14syl 17 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 · 𝑉) = (𝐸 · 𝑍))
5948, 57, 58fsumm1 14671 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍)))
60 eluzelz 11881 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
619, 60syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
6261adantr 472 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
63 fzoval 12657 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
6462, 63syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
6551zcnd 11667 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
66 ax-1cn 10178 . . . . . . . . . . . . 13 1 ∈ ℂ
67 pncan 10471 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
6865, 66, 67sylancl 697 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1) − 1) = 𝑀)
6968oveq1d 6820 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
7064, 69eqtr4d 2789 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (((𝑀 + 1) − 1)...(𝑁 − 1)))
7170sumeq1d 14622 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋))
72 1zzd 11592 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
7351peano2zd 11669 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℤ)
74 fsumparts.c . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))
75 oveq12 6814 . . . . . . . . . . 11 ((𝐴 = 𝐶𝑉 = 𝑋) → (𝐴 · 𝑉) = (𝐶 · 𝑋))
7674, 75syl 17 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝐴 · 𝑉) = (𝐶 · 𝑋))
7772, 73, 62, 57, 76fsumshftm 14704 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋))
7871, 77eqtr4d 2789 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉))
79 fzoval 12657 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8062, 79syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8180sumeq1d 14622 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉))
8281oveq1d 6820 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍)))
8359, 78, 823eqtr4d 2796 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)))
84 fzofi 12959 . . . . . . . . . 10 ((𝑀 + 1)..^𝑁) ∈ Fin
8584a1i 11 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ∈ Fin)
86 uzid 11886 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
87 peano2uz 11926 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
88 fzoss1 12681 . . . . . . . . . . . 12 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁))
8951, 86, 87, 884syl 19 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁))
9089sselda 3736 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (𝑀..^𝑁))
91 elfzofz 12671 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
9291, 55sylan2 492 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
9392adantlr 753 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
9490, 93syldan 488 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
9585, 94fsumcl 14655 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) ∈ ℂ)
96 eluzfz2 12534 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
979, 96syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ (𝑀...𝑁))
9813simpld 477 . . . . . . . . . . . . 13 (𝑘 = 𝑁𝐴 = 𝐸)
9998eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
10099rspcv 3437 . . . . . . . . . . 11 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐸 ∈ ℂ))
10197, 28, 100sylc 65 . . . . . . . . . 10 (𝜑𝐸 ∈ ℂ)
10213simprd 482 . . . . . . . . . . . . 13 (𝑘 = 𝑁𝑉 = 𝑍)
103102eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝑉 ∈ ℂ ↔ 𝑍 ∈ ℂ))
104103rspcv 3437 . . . . . . . . . . 11 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ → 𝑍 ∈ ℂ))
10597, 34, 104sylc 65 . . . . . . . . . 10 (𝜑𝑍 ∈ ℂ)
106101, 105mulcld 10244 . . . . . . . . 9 (𝜑 → (𝐸 · 𝑍) ∈ ℂ)
107106adantr 472 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐸 · 𝑍) ∈ ℂ)
10895, 107addcomd 10422 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)) = ((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
10983, 108eqtrd 2786 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = ((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
110109oveq1d 6820 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
111 fzofzp1 12751 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
11274simpld 477 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
113112eleq1d 2816 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
114113rspccva 3440 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
11528, 111, 114syl2an 495 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
116 elfzofz 12671 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
117 fsumparts.b . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))
118117simpld 477 . . . . . . . . . . . 12 (𝑘 = 𝑗𝐴 = 𝐵)
119118eleq1d 2816 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
120119rspccva 3440 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
12128, 116, 120syl2an 495 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
12274simprd 482 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → 𝑉 = 𝑋)
123122eleq1d 2816 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝑉 ∈ ℂ ↔ 𝑋 ∈ ℂ))
124123rspccva 3440 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝑋 ∈ ℂ)
12534, 111, 124syl2an 495 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
126115, 121, 125subdird 10671 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐶𝐵) · 𝑋) = ((𝐶 · 𝑋) − (𝐵 · 𝑋)))
127126sumeq2dv 14624 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)))
128 fzofi 12959 . . . . . . . . 9 (𝑀..^𝑁) ∈ Fin
129128a1i 11 . . . . . . . 8 (𝜑 → (𝑀..^𝑁) ∈ Fin)
130115, 125mulcld 10244 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
131121, 125mulcld 10244 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑋) ∈ ℂ)
132129, 130, 131fsumsub 14711 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
133127, 132eqtrd 2786 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
134133adantr 472 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
135129, 131fsumcl 14655 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ)
136135adantr 472 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ)
137107, 136, 95subsub3d 10606 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
138110, 134, 1373eqtr4d 2796 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))))
139138oveq2d 6821 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))))
14039adantr 472 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 · 𝑌) ∈ ℂ)
141136, 95subcld 10576 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) ∈ ℂ)
142107, 140, 141nnncan1d 10610 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))) = ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)))
14395, 140addcomd 10422 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
144 eluzp1m1 11895 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
14550, 144sylan 489 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
14664eleq2d 2817 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝑘 ∈ (𝑀...(𝑁 − 1))))
147146biimpar 503 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
148147, 93syldan 488 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐴 · 𝑉) ∈ ℂ)
149145, 148, 18fsum1p 14673 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)))
15064sumeq1d 14622 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉))
15181oveq2d 6821 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)))
152149, 150, 1513eqtr4d 2796 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
153143, 152eqtr4d 2789 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉))
154 oveq12 6814 . . . . . . . 8 ((𝐴 = 𝐵𝑉 = 𝑊) → (𝐴 · 𝑉) = (𝐵 · 𝑊))
155117, 154syl 17 . . . . . . 7 (𝑘 = 𝑗 → (𝐴 · 𝑉) = (𝐵 · 𝑊))
156155cbvsumv 14617 . . . . . 6 Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)
157153, 156syl6eq 2802 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))
158157oveq2d 6821 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
159136, 95, 140subsub4d 10607 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))))
160117simprd 482 . . . . . . . . . . 11 (𝑘 = 𝑗𝑉 = 𝑊)
161160eleq1d 2816 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑉 ∈ ℂ ↔ 𝑊 ∈ ℂ))
162161rspccva 3440 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑊 ∈ ℂ)
16334, 116, 162syl2an 495 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑊 ∈ ℂ)
164121, 125, 163subdid 10670 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · (𝑋𝑊)) = ((𝐵 · 𝑋) − (𝐵 · 𝑊)))
165164sumeq2dv 14624 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)))
166121, 163mulcld 10244 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑊) ∈ ℂ)
167129, 131, 166fsumsub 14711 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
168165, 167eqtrd 2786 . . . . 5 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
169168adantr 472 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
170158, 159, 1693eqtr4d 2796 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)))
171139, 142, 1703eqtrrd 2791 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
172 uzp1 11906 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1739, 172syl 17 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
17447, 171, 173mpjaodan 862 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1624  wcel 2131  wral 3042  wss 3707  c0 4050  cfv 6041  (class class class)co 6805  Fincfn 8113  cc 10118  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125  cmin 10450  cz 11561  cuz 11871  ...cfz 12511  ..^cfzo 12651  Σcsu 14607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608
This theorem is referenced by:  dchrisumlem2  25370  selberg2lem  25430  logdivbnd  25436  pntrsumo1  25445  pntrlog2bndlem2  25458  pntrlog2bndlem4  25460
  Copyright terms: Public domain W3C validator