Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrev2 Structured version   Visualization version   GIF version

Theorem fsumrev2 14442
 Description: Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumrev2.1 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumrev2.2 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
Assertion
Ref Expression
fsumrev2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)

Proof of Theorem fsumrev2
StepHypRef Expression
1 sum0 14385 . . . . 5 Σ𝑗 ∈ ∅ 𝐴 = 0
2 sum0 14385 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
31, 2eqtr4i 2646 . . . 4 Σ𝑗 ∈ ∅ 𝐴 = Σ𝑘 ∈ ∅ 𝐵
4 sumeq1 14353 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑗 ∈ ∅ 𝐴)
5 sumeq1 14353 . . . 4 ((𝑀...𝑁) = ∅ → Σ𝑘 ∈ (𝑀...𝑁)𝐵 = Σ𝑘 ∈ ∅ 𝐵)
63, 4, 53eqtr4a 2681 . . 3 ((𝑀...𝑁) = ∅ → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
76adantl 482 . 2 ((𝜑 ∧ (𝑀...𝑁) = ∅) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
8 fzn0 12297 . . 3 ((𝑀...𝑁) ≠ ∅ ↔ 𝑁 ∈ (ℤ𝑀))
9 eluzel2 11636 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109adantl 482 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 eluzelz 11641 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1211adantl 482 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
1310, 12zaddcld 11430 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (𝑀 + 𝑁) ∈ ℤ)
14 fsumrev2.1 . . . . . 6 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1514adantlr 750 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
16 fsumrev2.2 . . . . 5 (𝑗 = ((𝑀 + 𝑁) − 𝑘) → 𝐴 = 𝐵)
1713, 10, 12, 15, 16fsumrev 14439 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵)
1810zcnd 11427 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℂ)
1912zcnd 11427 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
2018, 19pncand 10337 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
2118, 19pncan2d 10338 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
2220, 21oveq12d 6622 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀)) = (𝑀...𝑁))
2322sumeq1d 14365 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑘 ∈ (((𝑀 + 𝑁) − 𝑁)...((𝑀 + 𝑁) − 𝑀))𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2417, 23eqtrd 2655 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
258, 24sylan2b 492 . 2 ((𝜑 ∧ (𝑀...𝑁) ≠ ∅) → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
267, 25pm2.61dane 2877 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∅c0 3891  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  0cc0 9880   + caddc 9883   − cmin 10210  ℤcz 11321  ℤ≥cuz 11631  ...cfz 12268  Σcsu 14350 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351 This theorem is referenced by:  fsum0diag2  14443  efaddlem  14748  aareccl  23985
 Copyright terms: Public domain W3C validator