Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsers Structured version   Visualization version   GIF version

Theorem fsumsers 14399
 Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
fsumsers.1 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumsers.2 (𝜑𝑁 ∈ (ℤ𝑀))
fsumsers.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsers.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsumsers (𝜑 → Σ𝑘𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumsers
StepHypRef Expression
1 eqid 2621 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 fsumsers.2 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzel2 11643 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
42, 3syl 17 . . 3 (𝜑𝑀 ∈ ℤ)
5 fsumsers.4 . . . 4 (𝜑𝐴 ⊆ (𝑀...𝑁))
6 fzssuz 12331 . . . 4 (𝑀...𝑁) ⊆ (ℤ𝑀)
75, 6syl6ss 3599 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
8 fsumsers.1 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
9 fsumsers.3 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
101, 4, 7, 8, 9zsum 14389 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
11 fclim 14225 . . . 4 ⇝ :dom ⇝ ⟶ℂ
12 ffun 6010 . . . 4 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
1311, 12ax-mp 5 . . 3 Fun ⇝
148, 2, 9, 5fsumcvg2 14398 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
15 funbrfv 6196 . . 3 (Fun ⇝ → (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁) → ( ⇝ ‘seq𝑀( + , 𝐹)) = (seq𝑀( + , 𝐹)‘𝑁)))
1613, 14, 15mpsyl 68 . 2 (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) = (seq𝑀( + , 𝐹)‘𝑁))
1710, 16eqtrd 2655 1 (𝜑 → Σ𝑘𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ⊆ wss 3559  ifcif 4063   class class class wbr 4618  dom cdm 5079  Fun wfun 5846  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610  ℂcc 9885  0cc0 9887   + caddc 9890  ℤcz 11328  ℤ≥cuz 11638  ...cfz 12275  seqcseq 12748   ⇝ cli 14156  Σcsu 14357 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358 This theorem is referenced by:  fsumser  14401
 Copyright terms: Public domain W3C validator