Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsplit1 Structured version   Visualization version   GIF version

Theorem fsumsplit1 41729
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplit1.kph 𝑘𝜑
fsumsplit1.kd 𝑘𝐷
fsumsplit1.a (𝜑𝐴 ∈ Fin)
fsumsplit1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsplit1.c (𝜑𝐶𝐴)
fsumsplit1.bd (𝑘 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fsumsplit1 (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplit1
StepHypRef Expression
1 uncom 4126 . . . . 5 ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶}))
21a1i 11 . . . 4 (𝜑 → ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶})))
3 fsumsplit1.c . . . . . 6 (𝜑𝐶𝐴)
43snssd 4734 . . . . 5 (𝜑 → {𝐶} ⊆ 𝐴)
5 undif 4426 . . . . 5 ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
64, 5sylib 219 . . . 4 (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
7 eqidd 2819 . . . 4 (𝜑𝐴 = 𝐴)
82, 6, 73eqtrrd 2858 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝐶}) ∪ {𝐶}))
98sumeq1d 15046 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵)
10 fsumsplit1.kph . . 3 𝑘𝜑
11 fsumsplit1.kd . . 3 𝑘𝐷
12 fsumsplit1.a . . . 4 (𝜑𝐴 ∈ Fin)
13 diffi 8738 . . . 4 (𝐴 ∈ Fin → (𝐴 ∖ {𝐶}) ∈ Fin)
1412, 13syl 17 . . 3 (𝜑 → (𝐴 ∖ {𝐶}) ∈ Fin)
15 neldifsnd 4718 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝐴 ∖ {𝐶}))
16 simpl 483 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝜑)
17 eldifi 4100 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝐶}) → 𝑘𝐴)
1817adantl 482 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝑘𝐴)
19 fsumsplit1.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2016, 18, 19syl2anc 584 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝐵 ∈ ℂ)
21 fsumsplit1.bd . . 3 (𝑘 = 𝐶𝐵 = 𝐷)
2211a1i 11 . . . . . 6 (𝜑𝑘𝐷)
23 simpr 485 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝑘 = 𝐶)
2423, 21syl 17 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
2510, 22, 3, 24csbiedf 3910 . . . . 5 (𝜑𝐶 / 𝑘𝐵 = 𝐷)
2625eqcomd 2824 . . . 4 (𝜑𝐷 = 𝐶 / 𝑘𝐵)
273ancli 549 . . . . 5 (𝜑 → (𝜑𝐶𝐴))
28 nfcv 2974 . . . . . 6 𝑘𝐶
29 nfv 1906 . . . . . . . 8 𝑘 𝐶𝐴
3010, 29nfan 1891 . . . . . . 7 𝑘(𝜑𝐶𝐴)
3128nfcsb1 3903 . . . . . . . 8 𝑘𝐶 / 𝑘𝐵
32 nfcv 2974 . . . . . . . 8 𝑘
3331, 32nfel 2989 . . . . . . 7 𝑘𝐶 / 𝑘𝐵 ∈ ℂ
3430, 33nfim 1888 . . . . . 6 𝑘((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)
35 eleq1 2897 . . . . . . . 8 (𝑘 = 𝐶 → (𝑘𝐴𝐶𝐴))
3635anbi2d 628 . . . . . . 7 (𝑘 = 𝐶 → ((𝜑𝑘𝐴) ↔ (𝜑𝐶𝐴)))
37 csbeq1a 3894 . . . . . . . 8 (𝑘 = 𝐶𝐵 = 𝐶 / 𝑘𝐵)
3837eleq1d 2894 . . . . . . 7 (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ 𝐶 / 𝑘𝐵 ∈ ℂ))
3936, 38imbi12d 346 . . . . . 6 (𝑘 = 𝐶 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)))
4028, 34, 39, 19vtoclgf 3563 . . . . 5 (𝐶𝐴 → ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ))
413, 27, 40sylc 65 . . . 4 (𝜑𝐶 / 𝑘𝐵 ∈ ℂ)
4226, 41eqeltrd 2910 . . 3 (𝜑𝐷 ∈ ℂ)
4310, 11, 14, 3, 15, 20, 21, 42fsumsplitsn 15088 . 2 (𝜑 → Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷))
4410, 14, 20fsumclf 41726 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 ∈ ℂ)
4544, 42addcomd 10830 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷) = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
469, 43, 453eqtrd 2857 1 (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wnf 1775  wcel 2105  wnfc 2958  csb 3880  cdif 3930  cun 3931  wss 3933  {csn 4557  (class class class)co 7145  Fincfn 8497  cc 10523   + caddc 10528  Σcsu 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031
This theorem is referenced by:  dvnmul  42104  etransclem35  42431  etransclem44  42440
  Copyright terms: Public domain W3C validator