Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsplitsndif Structured version   Visualization version   GIF version

Theorem fsumsplitsndif 40242
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
Assertion
Ref Expression
fsumsplitsndif ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumsplitsndif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neldifsnd 4262 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ¬ 𝑋 ∈ (𝐴 ∖ {𝑋}))
2 disjsn 4191 . . . . 5 (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐴 ∖ {𝑋}))
31, 2sylibr 222 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
4 uncom 3718 . . . . 5 ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = ({𝑋} ∪ (𝐴 ∖ {𝑋}))
5 simp2 1054 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋𝐴)
65snssd 4280 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → {𝑋} ⊆ 𝐴)
7 undif 4000 . . . . . 6 ({𝑋} ⊆ 𝐴 ↔ ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴)
86, 7sylib 206 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴)
94, 8syl5req 2656 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝐴 = ((𝐴 ∖ {𝑋}) ∪ {𝑋}))
10 simp1 1053 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
11 rspcsbela 3957 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1211zcnd 11318 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℂ)
1312expcom 449 . . . . . 6 (∀𝑘𝐴 𝐵 ∈ ℤ → (𝑥𝐴𝑥 / 𝑘𝐵 ∈ ℂ))
14133ad2ant3 1076 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (𝑥𝐴𝑥 / 𝑘𝐵 ∈ ℂ))
1514imp 443 . . . 4 (((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) ∧ 𝑥𝐴) → 𝑥 / 𝑘𝐵 ∈ ℂ)
163, 9, 10, 15fsumsplit 14267 . . 3 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑥𝐴 𝑥 / 𝑘𝐵 = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵))
17 nfcv 2750 . . . 4 𝑥𝐵
18 nfcsb1v 3514 . . . 4 𝑘𝑥 / 𝑘𝐵
19 csbeq1a 3507 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
2017, 18, 19cbvsumi 14224 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2117, 18, 19cbvsumi 14224 . . . 4 Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵
2217, 18, 19cbvsumi 14224 . . . 4 Σ𝑘 ∈ {𝑋}𝐵 = Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵
2321, 22oveq12i 6539 . . 3 𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵)
2416, 20, 233eqtr4g 2668 . 2 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵))
25 rspcsbela 3957 . . . . . 6 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℤ)
2625zcnd 11318 . . . . 5 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℂ)
27263adant1 1071 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℂ)
28 sumsns 14272 . . . 4 ((𝑋𝐴𝑋 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑋}𝐵 = 𝑋 / 𝑘𝐵)
295, 27, 28syl2anc 690 . . 3 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑋}𝐵 = 𝑋 / 𝑘𝐵)
3029oveq2d 6543 . 2 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
3124, 30eqtrd 2643 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  csb 3498  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873  {csn 4124  (class class class)co 6527  Fincfn 7819  cc 9791   + caddc 9796  cz 11213  Σcsu 14213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator