MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplitsnun Structured version   Visualization version   GIF version

Theorem fsumsplitsnun 15112
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
Assertion
Ref Expression
fsumsplitsnun ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem fsumsplitsnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3126 . . . . . . 7 (𝑍𝐴 ↔ ¬ 𝑍𝐴)
2 disjsn 4649 . . . . . . 7 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
31, 2sylbb2 240 . . . . . 6 (𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
43adantl 484 . . . . 5 ((𝑍𝑉𝑍𝐴) → (𝐴 ∩ {𝑍}) = ∅)
543ad2ant2 1130 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∩ {𝑍}) = ∅)
6 eqidd 2824 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) = (𝐴 ∪ {𝑍}))
7 snfi 8596 . . . . . 6 {𝑍} ∈ Fin
8 unfi 8787 . . . . . 6 ((𝐴 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝐴 ∪ {𝑍}) ∈ Fin)
97, 8mpan2 689 . . . . 5 (𝐴 ∈ Fin → (𝐴 ∪ {𝑍}) ∈ Fin)
1093ad2ant1 1129 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) ∈ Fin)
11 rspcsbela 4389 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1211expcom 416 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
13123ad2ant3 1131 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
1413imp 409 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1514zcnd 12091 . . . 4 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℂ)
165, 6, 10, 15fsumsplit 15099 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵 = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵))
17 nfcv 2979 . . . 4 𝑥𝐵
18 nfcsb1v 3909 . . . 4 𝑘𝑥 / 𝑘𝐵
19 csbeq1a 3899 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
2017, 18, 19cbvsumi 15056 . . 3 Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵
2117, 18, 19cbvsumi 15056 . . . 4 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2217, 18, 19cbvsumi 15056 . . . 4 Σ𝑘 ∈ {𝑍}𝐵 = Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵
2321, 22oveq12i 7170 . . 3 𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵)
2416, 20, 233eqtr4g 2883 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵))
25 simp2l 1195 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍𝑉)
26 snidg 4601 . . . . . . . . 9 (𝑍𝑉𝑍 ∈ {𝑍})
2726adantr 483 . . . . . . . 8 ((𝑍𝑉𝑍𝐴) → 𝑍 ∈ {𝑍})
28273ad2ant2 1130 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ {𝑍})
29 elun2 4155 . . . . . . 7 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝐴 ∪ {𝑍}))
3028, 29syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ (𝐴 ∪ {𝑍}))
31 simp3 1134 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ)
32 rspcsbela 4389 . . . . . 6 ((𝑍 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3330, 31, 32syl2anc 586 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3433zcnd 12091 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℂ)
35 sumsns 15107 . . . 4 ((𝑍𝑉𝑍 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
3625, 34, 35syl2anc 586 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
3736oveq2d 7174 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
3824, 37eqtrd 2858 1 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wnel 3125  wral 3140  csb 3885  cun 3936  cin 3937  c0 4293  {csn 4569  (class class class)co 7158  Fincfn 8511  cc 10537   + caddc 10542  cz 11984  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by:  modfsummods  15150  sumeven  15740  sumodd  15741  finsumvtxdg2sstep  27333
  Copyright terms: Public domain W3C validator