Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsupp0 Structured version   Visualization version   GIF version

Theorem fsumsupp0 39211
Description: Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
fsumsupp0.a (𝜑𝐴 ∈ Fin)
fsumsupp0.f (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
fsumsupp0 (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹𝑘) = Σ𝑘𝐴 (𝐹𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem fsumsupp0
StepHypRef Expression
1 fsumsupp0.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21ffnd 6003 . . . 4 (𝜑𝐹 Fn 𝐴)
3 fsumsupp0.a . . . 4 (𝜑𝐴 ∈ Fin)
4 0red 9985 . . . 4 (𝜑 → 0 ∈ ℝ)
5 suppvalfn 7247 . . . 4 ((𝐹 Fn 𝐴𝐴 ∈ Fin ∧ 0 ∈ ℝ) → (𝐹 supp 0) = {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0})
62, 3, 4, 5syl3anc 1323 . . 3 (𝜑 → (𝐹 supp 0) = {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0})
7 ssrab2 3666 . . 3 {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0} ⊆ 𝐴
86, 7syl6eqss 3634 . 2 (𝜑 → (𝐹 supp 0) ⊆ 𝐴)
91adantr 481 . . 3 ((𝜑𝑘 ∈ (𝐹 supp 0)) → 𝐹:𝐴⟶ℂ)
108sselda 3583 . . 3 ((𝜑𝑘 ∈ (𝐹 supp 0)) → 𝑘𝐴)
119, 10ffvelrnd 6316 . 2 ((𝜑𝑘 ∈ (𝐹 supp 0)) → (𝐹𝑘) ∈ ℂ)
12 eldifi 3710 . . . . . . . 8 (𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) → 𝑘𝐴)
1312adantr 481 . . . . . . 7 ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹𝑘) = 0) → 𝑘𝐴)
14 neqne 2798 . . . . . . . 8 (¬ (𝐹𝑘) = 0 → (𝐹𝑘) ≠ 0)
1514adantl 482 . . . . . . 7 ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹𝑘) = 0) → (𝐹𝑘) ≠ 0)
1613, 15jca 554 . . . . . 6 ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹𝑘) = 0) → (𝑘𝐴 ∧ (𝐹𝑘) ≠ 0))
17 rabid 3106 . . . . . 6 (𝑘 ∈ {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0} ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 0))
1816, 17sylibr 224 . . . . 5 ((𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) ∧ ¬ (𝐹𝑘) = 0) → 𝑘 ∈ {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0})
1918adantll 749 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹𝑘) = 0) → 𝑘 ∈ {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0})
206eleq2d 2684 . . . . 5 (𝜑 → (𝑘 ∈ (𝐹 supp 0) ↔ 𝑘 ∈ {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0}))
2120ad2antrr 761 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹𝑘) = 0) → (𝑘 ∈ (𝐹 supp 0) ↔ 𝑘 ∈ {𝑘𝐴 ∣ (𝐹𝑘) ≠ 0}))
2219, 21mpbird 247 . . 3 (((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹𝑘) = 0) → 𝑘 ∈ (𝐹 supp 0))
23 eldifn 3711 . . . 4 (𝑘 ∈ (𝐴 ∖ (𝐹 supp 0)) → ¬ 𝑘 ∈ (𝐹 supp 0))
2423ad2antlr 762 . . 3 (((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) ∧ ¬ (𝐹𝑘) = 0) → ¬ 𝑘 ∈ (𝐹 supp 0))
2522, 24condan 834 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 0))) → (𝐹𝑘) = 0)
268, 11, 25, 3fsumss 14389 1 (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹𝑘) = Σ𝑘𝐴 (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  {crab 2911  cdif 3552   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604   supp csupp 7240  Fincfn 7899  cc 9878  cr 9879  0cc0 9880  Σcsu 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351
This theorem is referenced by:  rrxtopnfi  39810
  Copyright terms: Public domain W3C validator