MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma2 Structured version   Visualization version   GIF version

Theorem fsumvma2 24856
Description: Apply fsumvma 24855 for the common case of all numbers less than a real number 𝐴. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
fsumvma2.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma2.2 (𝜑𝐴 ∈ ℝ)
fsumvma2.3 ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
fsumvma2.4 ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma2 (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)

Proof of Theorem fsumvma2
StepHypRef Expression
1 fsumvma2.1 . 2 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
2 fzfid 12720 . 2 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
3 elfznn 12320 . . . 4 (𝑥 ∈ (1...(⌊‘𝐴)) → 𝑥 ∈ ℕ)
43ssriv 3591 . . 3 (1...(⌊‘𝐴)) ⊆ ℕ
54a1i 11 . 2 (𝜑 → (1...(⌊‘𝐴)) ⊆ ℕ)
6 fsumvma2.2 . . 3 (𝜑𝐴 ∈ ℝ)
7 ppifi 24749 . . 3 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
86, 7syl 17 . 2 (𝜑 → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
9 elin 3779 . . . . . 6 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ))
109simprbi 480 . . . . 5 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
11 elfznn 12320 . . . . 5 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
1210, 11anim12i 589 . . . 4 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1312pm4.71ri 664 . . 3 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
146adantr 481 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝐴 ∈ ℝ)
15 prmnn 15323 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1615ad2antrl 763 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ)
17 nnnn0 11251 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
1817ad2antll 764 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ0)
1916, 18nnexpcld 12978 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℕ)
2019nnzd 11433 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℤ)
21 flge 12554 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑝𝑘) ∈ ℤ) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
2214, 20, 21syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
23 simplrl 799 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℙ)
2423, 15syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℕ)
2524nnrpd 11822 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ+)
26 simplrr 800 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℕ)
2726nnzd 11433 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℤ)
28 relogexp 24263 . . . . . . . . . . 11 ((𝑝 ∈ ℝ+𝑘 ∈ ℤ) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
2925, 27, 28syl2anc 692 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
3029breq1d 4628 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴)))
3126nnred 10987 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℝ)
3214adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ)
33 0red 9993 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 ∈ ℝ)
3416nnred 10987 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℝ)
3534adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ)
3624nngt0d 11016 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝑝)
37 0red 9993 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ∈ ℝ)
38 nnnn0 11251 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℕ → 𝑝 ∈ ℕ0)
3916, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ0)
4039nn0ge0d 11306 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ≤ 𝑝)
41 elicc2 12188 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
42 df-3an 1038 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴))
4341, 42syl6bb 276 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴)))
4443baibd 947 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
4537, 14, 34, 40, 44syl22anc 1324 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
4645biimpa 501 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝𝐴)
4733, 35, 32, 36, 46ltletrd 10149 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝐴)
4832, 47elrpd 11821 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ+)
4948relogcld 24290 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝐴) ∈ ℝ)
50 prmuz2 15343 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
51 eluzelre 11650 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
52 eluz2b2 11713 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
5352simprbi 480 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
5451, 53rplogcld 24296 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
5523, 50, 543syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝑝) ∈ ℝ+)
5631, 49, 55lemuldivd 11873 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
5749, 55rerpdivcld 11855 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
58 flge 12554 . . . . . . . . . 10 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5957, 27, 58syl2anc 692 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
6030, 56, 593bitrd 294 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
6119adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝𝑘) ∈ ℕ)
6261nnrpd 11822 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝𝑘) ∈ ℝ+)
6362, 48logled 24294 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (log‘(𝑝𝑘)) ≤ (log‘𝐴)))
64 simprr 795 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
65 nnuz 11675 . . . . . . . . . . 11 ℕ = (ℤ‘1)
6664, 65syl6eleq 2708 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ (ℤ‘1))
6766adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ (ℤ‘1))
6857flcld 12547 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
69 elfz5 12284 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
7067, 68, 69syl2anc 692 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
7160, 63, 703bitr4d 300 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))))
7271pm5.32da 672 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ (0[,]𝐴) ∧ (𝑝𝑘) ≤ 𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
7316nncnd 10988 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℂ)
7473exp1d 12951 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) = 𝑝)
7516nnge1d 11015 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 1 ≤ 𝑝)
7634, 75, 66leexp2ad 12989 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) ≤ (𝑝𝑘))
7774, 76eqbrtrrd 4642 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ≤ (𝑝𝑘))
7819nnred 10987 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℝ)
79 letr 10083 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
8034, 78, 14, 79syl3anc 1323 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
8177, 80mpand 710 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴𝑝𝐴))
8281, 45sylibrd 249 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴𝑝 ∈ (0[,]𝐴)))
8382pm4.71rd 666 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝 ∈ (0[,]𝐴) ∧ (𝑝𝑘) ≤ 𝐴)))
849rbaib 946 . . . . . . . 8 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴)))
8584ad2antrl 763 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴)))
8685anbi1d 740 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
8772, 83, 863bitr4rd 301 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝑘) ≤ 𝐴))
8819, 65syl6eleq 2708 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ (ℤ‘1))
8914flcld 12547 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (⌊‘𝐴) ∈ ℤ)
90 elfz5 12284 . . . . . 6 (((𝑝𝑘) ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ ℤ) → ((𝑝𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
9188, 89, 90syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
9222, 87, 913bitr4d 300 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝑘) ∈ (1...(⌊‘𝐴))))
9392pm5.32da 672 . . 3 (𝜑 → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ (1...(⌊‘𝐴)))))
9413, 93syl5bb 272 . 2 (𝜑 → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ (1...(⌊‘𝐴)))))
95 fsumvma2.3 . 2 ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
96 fsumvma2.4 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
971, 2, 5, 8, 94, 95, 96fsumvma 24855 1 (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cin 3558  wss 3559   class class class wbr 4618  cfv 5852  (class class class)co 6610  Fincfn 7907  cc 9886  cr 9887  0cc0 9888  1c1 9889   · cmul 9893   < clt 10026  cle 10027   / cdiv 10636  cn 10972  2c2 11022  0cn0 11244  cz 11329  cuz 11639  +crp 11784  [,]cicc 12128  ...cfz 12276  cfl 12539  cexp 12808  Σcsu 14358  cprime 15320  logclog 24222  Λcvma 24735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-pi 14739  df-dvds 14919  df-gcd 15152  df-prm 15321  df-pc 15477  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554  df-log 24224  df-vma 24741
This theorem is referenced by:  chpval2  24860  rplogsumlem2  25091  rpvmasumlem  25093
  Copyright terms: Public domain W3C validator