MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiubex Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiubex 12612
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiubex ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚

Proof of Theorem fsuppmapnn0fiubex
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11157 . . . . 5 0 ∈ ℕ0
21a1i 11 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → 0 ∈ ℕ0)
3 oveq2 6535 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = (0...0))
43sseq2d 3596 . . . . . 6 (𝑚 = 0 → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...0)))
54ralbidv 2969 . . . . 5 (𝑚 = 0 → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
65adantl 481 . . . 4 (((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ 𝑚 = 0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
7 ral0 4028 . . . . . 6 𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0)
8 raleq 3115 . . . . . 6 (∅ = 𝑀 → (∀𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
97, 8mpbii 222 . . . . 5 (∅ = 𝑀 → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
10 0ss 3924 . . . . . . 7 ∅ ⊆ (0...0)
11 sseq1 3589 . . . . . . 7 ((𝑓 supp 𝑍) = ∅ → ((𝑓 supp 𝑍) ⊆ (0...0) ↔ ∅ ⊆ (0...0)))
1210, 11mpbiri 247 . . . . . 6 ((𝑓 supp 𝑍) = ∅ → (𝑓 supp 𝑍) ⊆ (0...0))
1312ralimi 2936 . . . . 5 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
149, 13jaoi 393 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
152, 6, 14rspcedvd 3289 . . 3 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
16152a1d 26 . 2 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
17 simplr 788 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
18 simpr 476 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 𝑓 finSupp 𝑍)
19 ioran 510 . . . . . . . . . 10 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅))
20 oveq1 6534 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍))
2120eqeq1d 2612 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) = ∅))
2221cbvralv 3147 . . . . . . . . . . . 12 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2322notbii 309 . . . . . . . . . . 11 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2423anbi2i 726 . . . . . . . . . 10 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
2519, 24bitri 263 . . . . . . . . 9 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
26 rexnal 2978 . . . . . . . . . . 11 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
27 df-ne 2782 . . . . . . . . . . . . 13 ((𝑔 supp 𝑍) ≠ ∅ ↔ ¬ (𝑔 supp 𝑍) = ∅)
2827bicomi 213 . . . . . . . . . . . 12 (¬ (𝑔 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) ≠ ∅)
2928rexbii 3023 . . . . . . . . . . 11 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3026, 29sylbb1 226 . . . . . . . . . 10 (¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅ → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3130adantl 481 . . . . . . . . 9 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3225, 31sylbi 206 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3332ad2antrr 758 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
34 iunn0 4511 . . . . . . 7 (∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3533, 34sylib 207 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3618, 35jca 553 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
37 oveq1 6534 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍))
3837cbviunv 4490 . . . . . 6 𝑔𝑀 (𝑔 supp 𝑍) = 𝑓𝑀 (𝑓 supp 𝑍)
39 eqid 2610 . . . . . 6 sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
4038, 39fsuppmapnn0fiublem 12609 . . . . 5 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0))
4117, 36, 40sylc 63 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0)
42 nfv 1830 . . . . . . . . . 10 𝑓∅ = 𝑀
43 nfra1 2925 . . . . . . . . . 10 𝑓𝑓𝑀 (𝑓 supp 𝑍) = ∅
4442, 43nfor 1822 . . . . . . . . 9 𝑓(∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
4544nfn 1768 . . . . . . . 8 𝑓 ¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
46 nfv 1830 . . . . . . . 8 𝑓(𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
4745, 46nfan 1816 . . . . . . 7 𝑓(¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
48 nfra1 2925 . . . . . . 7 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4947, 48nfan 1816 . . . . . 6 𝑓((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍)
50 nfv 1830 . . . . . 6 𝑓 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
5149, 50nfan 1816 . . . . 5 𝑓(((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))
52 oveq2 6535 . . . . . . 7 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → (0...𝑚) = (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
5352sseq2d 3596 . . . . . 6 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5453adantl 481 . . . . 5 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5551, 54ralbid 2966 . . . 4 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
56 rexnal 2978 . . . . . . . . . . 11 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
57 df-ne 2782 . . . . . . . . . . . . 13 ((𝑓 supp 𝑍) ≠ ∅ ↔ ¬ (𝑓 supp 𝑍) = ∅)
5857bicomi 213 . . . . . . . . . . . 12 (¬ (𝑓 supp 𝑍) = ∅ ↔ (𝑓 supp 𝑍) ≠ ∅)
5958rexbii 3023 . . . . . . . . . . 11 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6056, 59sylbb1 226 . . . . . . . . . 10 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6160adantl 481 . . . . . . . . 9 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6219, 61sylbi 206 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6362ad2antrr 758 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
64 iunn0 4511 . . . . . . . 8 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6520cbviunv 4490 . . . . . . . . 9 𝑓𝑀 (𝑓 supp 𝑍) = 𝑔𝑀 (𝑔 supp 𝑍)
6665neeq1i 2846 . . . . . . . 8 ( 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6764, 66bitri 263 . . . . . . 7 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6863, 67sylib 207 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6918, 68jca 553 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
7038, 39fsuppmapnn0fiub 12610 . . . . 5 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
7117, 69, 70sylc 63 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
7241, 55, 71rspcedvd 3289 . . 3 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
7372exp31 628 . 2 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
7416, 73pm2.61i 175 1 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   ciun 4450   class class class wbr 4578  (class class class)co 6527   supp csupp 7160  𝑚 cmap 7722  Fincfn 7819   finSupp cfsupp 8136  supcsup 8207  cr 9792  0cc0 9793   < clt 9931  0cn0 11142  ...cfz 12155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-sup 8209  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156
This theorem is referenced by:  fsuppmapnn0fiub0  12613
  Copyright terms: Public domain W3C validator