MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiubex Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiubex 12832
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0. (Contributed by AV, 2-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiubex ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚

Proof of Theorem fsuppmapnn0fiubex
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11345 . . . . 5 0 ∈ ℕ0
21a1i 11 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → 0 ∈ ℕ0)
3 oveq2 6698 . . . . . . 7 (𝑚 = 0 → (0...𝑚) = (0...0))
43sseq2d 3666 . . . . . 6 (𝑚 = 0 → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...0)))
54ralbidv 3015 . . . . 5 (𝑚 = 0 → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
65adantl 481 . . . 4 (((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ 𝑚 = 0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
7 ral0 4109 . . . . . 6 𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0)
8 raleq 3168 . . . . . 6 (∅ = 𝑀 → (∀𝑓 ∈ ∅ (𝑓 supp 𝑍) ⊆ (0...0) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0)))
97, 8mpbii 223 . . . . 5 (∅ = 𝑀 → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
10 0ss 4005 . . . . . . 7 ∅ ⊆ (0...0)
11 sseq1 3659 . . . . . . 7 ((𝑓 supp 𝑍) = ∅ → ((𝑓 supp 𝑍) ⊆ (0...0) ↔ ∅ ⊆ (0...0)))
1210, 11mpbiri 248 . . . . . 6 ((𝑓 supp 𝑍) = ∅ → (𝑓 supp 𝑍) ⊆ (0...0))
1312ralimi 2981 . . . . 5 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
149, 13jaoi 393 . . . 4 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...0))
152, 6, 14rspcedvd 3348 . . 3 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
16152a1d 26 . 2 ((∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
17 simplr 807 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
18 simpr 476 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 𝑓 finSupp 𝑍)
19 ioran 510 . . . . . . . . . 10 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅))
20 oveq1 6697 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓 supp 𝑍) = (𝑔 supp 𝑍))
2120eqeq1d 2653 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) = ∅))
2221cbvralv 3201 . . . . . . . . . . . 12 (∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2322notbii 309 . . . . . . . . . . 11 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
2423anbi2i 730 . . . . . . . . . 10 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
2519, 24bitri 264 . . . . . . . . 9 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ↔ (¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅))
26 rexnal 3024 . . . . . . . . . . 11 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅)
27 df-ne 2824 . . . . . . . . . . . . 13 ((𝑔 supp 𝑍) ≠ ∅ ↔ ¬ (𝑔 supp 𝑍) = ∅)
2827bicomi 214 . . . . . . . . . . . 12 (¬ (𝑔 supp 𝑍) = ∅ ↔ (𝑔 supp 𝑍) ≠ ∅)
2928rexbii 3070 . . . . . . . . . . 11 (∃𝑔𝑀 ¬ (𝑔 supp 𝑍) = ∅ ↔ ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3026, 29sylbb1 227 . . . . . . . . . 10 (¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅ → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3130adantl 481 . . . . . . . . 9 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑔𝑀 (𝑔 supp 𝑍) = ∅) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3225, 31sylbi 207 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3332ad2antrr 762 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
34 iunn0 4612 . . . . . . 7 (∃𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3533, 34sylib 208 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
3618, 35jca 553 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
37 oveq1 6697 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 supp 𝑍) = (𝑓 supp 𝑍))
3837cbviunv 4591 . . . . . 6 𝑔𝑀 (𝑔 supp 𝑍) = 𝑓𝑀 (𝑓 supp 𝑍)
39 eqid 2651 . . . . . 6 sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
4038, 39fsuppmapnn0fiublem 12829 . . . . 5 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0))
4117, 36, 40sylc 65 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) ∈ ℕ0)
42 nfv 1883 . . . . . . . . . 10 𝑓∅ = 𝑀
43 nfra1 2970 . . . . . . . . . 10 𝑓𝑓𝑀 (𝑓 supp 𝑍) = ∅
4442, 43nfor 1874 . . . . . . . . 9 𝑓(∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
4544nfn 1824 . . . . . . . 8 𝑓 ¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
46 nfv 1883 . . . . . . . 8 𝑓(𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
4745, 46nfan 1868 . . . . . . 7 𝑓(¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉))
48 nfra1 2970 . . . . . . 7 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4947, 48nfan 1868 . . . . . 6 𝑓((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍)
50 nfv 1883 . . . . . 6 𝑓 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )
5149, 50nfan 1868 . . . . 5 𝑓(((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))
52 oveq2 6698 . . . . . . 7 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → (0...𝑚) = (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
5352sseq2d 3666 . . . . . 6 (𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5453adantl 481 . . . . 5 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
5551, 54ralbid 3012 . . . 4 ((((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) ∧ 𝑚 = sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
56 rexnal 3024 . . . . . . . . . . 11 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅)
57 df-ne 2824 . . . . . . . . . . . . 13 ((𝑓 supp 𝑍) ≠ ∅ ↔ ¬ (𝑓 supp 𝑍) = ∅)
5857bicomi 214 . . . . . . . . . . . 12 (¬ (𝑓 supp 𝑍) = ∅ ↔ (𝑓 supp 𝑍) ≠ ∅)
5958rexbii 3070 . . . . . . . . . . 11 (∃𝑓𝑀 ¬ (𝑓 supp 𝑍) = ∅ ↔ ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6056, 59sylbb1 227 . . . . . . . . . 10 (¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅ → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6160adantl 481 . . . . . . . . 9 ((¬ ∅ = 𝑀 ∧ ¬ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6219, 61sylbi 207 . . . . . . . 8 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6362ad2antrr 762 . . . . . . 7 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
64 iunn0 4612 . . . . . . . 8 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅)
6520cbviunv 4591 . . . . . . . . 9 𝑓𝑀 (𝑓 supp 𝑍) = 𝑔𝑀 (𝑔 supp 𝑍)
6665neeq1i 2887 . . . . . . . 8 ( 𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6764, 66bitri 264 . . . . . . 7 (∃𝑓𝑀 (𝑓 supp 𝑍) ≠ ∅ ↔ 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6863, 67sylib 208 . . . . . 6 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅)
6918, 68jca 553 . . . . 5 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → (∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅))
7038, 39fsuppmapnn0fiub 12830 . . . . 5 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍 𝑔𝑀 (𝑔 supp 𝑍) ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < ))))
7117, 69, 70sylc 65 . . . 4 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...sup( 𝑔𝑀 (𝑔 supp 𝑍), ℝ, < )))
7241, 55, 71rspcedvd 3348 . . 3 (((¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) ∧ (𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)) ∧ ∀𝑓𝑀 𝑓 finSupp 𝑍) → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))
7372exp31 629 . 2 (¬ (∅ = 𝑀 ∨ ∀𝑓𝑀 (𝑓 supp 𝑍) = ∅) → ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚))))
7416, 73pm2.61i 176 1 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   ciun 4552   class class class wbr 4685  (class class class)co 6690   supp csupp 7340  𝑚 cmap 7899  Fincfn 7997   finSupp cfsupp 8316  supcsup 8387  cr 9973  0cc0 9974   < clt 10112  0cn0 11330  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by:  fsuppmapnn0fiub0  12833
  Copyright terms: Public domain W3C validator