MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0ub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0ub 13351
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0ub ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
Distinct variable groups:   𝑚,𝐹,𝑥   𝑥,𝑉   𝑚,𝑍,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑚)   𝑉(𝑚)

Proof of Theorem fsuppmapnn0ub
StepHypRef Expression
1 simpr 485 . . . 4 (((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) ∧ 𝐹 finSupp 𝑍) → 𝐹 finSupp 𝑍)
21fsuppimpd 8828 . . 3 (((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) ∧ 𝐹 finSupp 𝑍) → (𝐹 supp 𝑍) ∈ Fin)
32ex 413 . 2 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → (𝐹 supp 𝑍) ∈ Fin))
4 elmapfn 8418 . . . . . 6 (𝐹 ∈ (𝑅m0) → 𝐹 Fn ℕ0)
54adantr 481 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → 𝐹 Fn ℕ0)
6 nn0ex 11891 . . . . . 6 0 ∈ V
76a1i 11 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ℕ0 ∈ V)
8 simpr 485 . . . . 5 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → 𝑍𝑉)
9 suppvalfn 7826 . . . . 5 ((𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍})
105, 7, 8, 9syl3anc 1363 . . . 4 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍})
1110eleq1d 2894 . . 3 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ((𝐹 supp 𝑍) ∈ Fin ↔ {𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin))
12 rabssnn0fi 13342 . . . 4 ({𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin ↔ ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍))
13 nne 3017 . . . . . . 7 (¬ (𝐹𝑥) ≠ 𝑍 ↔ (𝐹𝑥) = 𝑍)
1413imbi2i 337 . . . . . 6 ((𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1514ralbii 3162 . . . . 5 (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1615rexbii 3244 . . . 4 (∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → ¬ (𝐹𝑥) ≠ 𝑍) ↔ ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1712, 16sylbb 220 . . 3 ({𝑥 ∈ ℕ0 ∣ (𝐹𝑥) ≠ 𝑍} ∈ Fin → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍))
1811, 17syl6bi 254 . 2 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → ((𝐹 supp 𝑍) ∈ Fin → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
193, 18syld 47 1 ((𝐹 ∈ (𝑅m0) ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  Vcvv 3492   class class class wbr 5057   Fn wfn 6343  cfv 6348  (class class class)co 7145   supp csupp 7819  m cmap 8395  Fincfn 8497   finSupp cfsupp 8821   < clt 10663  0cn0 11885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881
This theorem is referenced by:  fsuppmapnn0fz  13352  nn0gsumfz  19033  mptcoe1fsupp  20311  coe1ae0  20312  gsummoncoe1  20400  mptcoe1matfsupp  21338  mp2pm2mplem4  21345  pm2mp  21361  cayhamlem4  21424
  Copyright terms: Public domain W3C validator