MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptif Structured version   Visualization version   GIF version

Theorem fsuppmptif 8249
Description: A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptif.f (𝜑𝐹:𝐴𝐵)
fsuppmptif.a (𝜑𝐴𝑉)
fsuppmptif.z (𝜑𝑍𝑊)
fsuppmptif.s (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppmptif (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem fsuppmptif
StepHypRef Expression
1 fvex 6158 . . . . 5 (𝐹𝑘) ∈ V
2 fsuppmptif.z . . . . . 6 (𝜑𝑍𝑊)
32adantr 481 . . . . 5 ((𝜑𝑘𝐴) → 𝑍𝑊)
4 ifexg 4129 . . . . 5 (((𝐹𝑘) ∈ V ∧ 𝑍𝑊) → if(𝑘𝐷, (𝐹𝑘), 𝑍) ∈ V)
51, 3, 4sylancr 694 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), 𝑍) ∈ V)
6 eqid 2621 . . . 4 (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍))
75, 6fmptd 6340 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)):𝐴⟶V)
8 ffun 6005 . . 3 ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)):𝐴⟶V → Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)))
97, 8syl 17 . 2 (𝜑 → Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)))
10 fsuppmptif.s . . . 4 (𝜑𝐹 finSupp 𝑍)
1110fsuppimpd 8226 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
12 fsuppmptif.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
13 ssid 3603 . . . . . . . 8 (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)
1413a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
15 fsuppmptif.a . . . . . . 7 (𝜑𝐴𝑉)
1612, 14, 15, 2suppssr 7271 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑘) = 𝑍)
1716ifeq1d 4076 . . . . 5 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘𝐷, (𝐹𝑘), 𝑍) = if(𝑘𝐷, 𝑍, 𝑍))
18 ifid 4097 . . . . 5 if(𝑘𝐷, 𝑍, 𝑍) = 𝑍
1917, 18syl6eq 2671 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → if(𝑘𝐷, (𝐹𝑘), 𝑍) = 𝑍)
2019, 15suppss2 7274 . . 3 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍))
21 ssfi 8124 . . 3 (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)
2211, 20, 21syl2anc 692 . 2 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)
23 mptexg 6438 . . . 4 (𝐴𝑉 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V)
2415, 23syl 17 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V)
25 isfsupp 8223 . . 3 (((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∈ V ∧ 𝑍𝑊) → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)))
2624, 2, 25syl2anc 692 . 2 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍 ↔ (Fun (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) ∧ ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) supp 𝑍) ∈ Fin)))
279, 22, 26mpbir2and 956 1 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), 𝑍)) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  Vcvv 3186  cdif 3552  wss 3555  ifcif 4058   class class class wbr 4613  cmpt 4673  Fun wfun 5841  wf 5843  cfv 5847  (class class class)co 6604   supp csupp 7240  Fincfn 7899   finSupp cfsupp 8219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-supp 7241  df-er 7687  df-en 7900  df-fin 7903  df-fsupp 8220
This theorem is referenced by:  cantnflem1d  8529  gsumzsplit  18248
  Copyright terms: Public domain W3C validator