MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppres Structured version   Visualization version   GIF version

Theorem fsuppres 8465
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
fsuppres.s (𝜑𝐹 finSupp 𝑍)
fsuppres.z (𝜑𝑍𝑉)
Assertion
Ref Expression
fsuppres (𝜑 → (𝐹𝑋) finSupp 𝑍)

Proof of Theorem fsuppres
StepHypRef Expression
1 fsuppres.s . . 3 (𝜑𝐹 finSupp 𝑍)
2 fsuppimp 8446 . . . 4 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
3 relprcnfsupp 8443 . . . . . . . . . . . 12 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍)
43con4i 113 . . . . . . . . . . 11 (𝐹 finSupp 𝑍𝐹 ∈ V)
51, 4syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
6 fsuppres.z . . . . . . . . . 10 (𝜑𝑍𝑉)
75, 6jca 555 . . . . . . . . 9 (𝜑 → (𝐹 ∈ V ∧ 𝑍𝑉))
87adantr 472 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (𝐹 ∈ V ∧ 𝑍𝑉))
9 ressuppss 7482 . . . . . . . 8 ((𝐹 ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍))
10 ssfi 8345 . . . . . . . . 9 (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐹𝑋) supp 𝑍) ∈ Fin)
1110expcom 450 . . . . . . . 8 (((𝐹𝑋) supp 𝑍) ⊆ (𝐹 supp 𝑍) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
128, 9, 113syl 18 . . . . . . 7 ((𝜑 ∧ Fun 𝐹) → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin))
1312expcom 450 . . . . . 6 (Fun 𝐹 → (𝜑 → ((𝐹 supp 𝑍) ∈ Fin → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1413com23 86 . . . . 5 (Fun 𝐹 → ((𝐹 supp 𝑍) ∈ Fin → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)))
1514imp 444 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
162, 15syl 17 . . 3 (𝐹 finSupp 𝑍 → (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin))
171, 16mpcom 38 . 2 (𝜑 → ((𝐹𝑋) supp 𝑍) ∈ Fin)
18 funres 6090 . . . . 5 (Fun 𝐹 → Fun (𝐹𝑋))
1918adantr 472 . . . 4 ((Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin) → Fun (𝐹𝑋))
201, 2, 193syl 18 . . 3 (𝜑 → Fun (𝐹𝑋))
21 resexg 5600 . . . 4 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
221, 4, 213syl 18 . . 3 (𝜑 → (𝐹𝑋) ∈ V)
23 funisfsupp 8445 . . 3 ((Fun (𝐹𝑋) ∧ (𝐹𝑋) ∈ V ∧ 𝑍𝑉) → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2420, 22, 6, 23syl3anc 1477 . 2 (𝜑 → ((𝐹𝑋) finSupp 𝑍 ↔ ((𝐹𝑋) supp 𝑍) ∈ Fin))
2517, 24mpbird 247 1 (𝜑 → (𝐹𝑋) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  Vcvv 3340  wss 3715   class class class wbr 4804  cres 5268  Fun wfun 6043  (class class class)co 6813   supp csupp 7463  Fincfn 8121   finSupp cfsupp 8440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-supp 7464  df-er 7911  df-en 8122  df-fin 8125  df-fsupp 8441
This theorem is referenced by:  dprdfadd  18619  frlmsplit2  20314  gsumle  30088  lindslinindimp2lem3  42759  lindslinindsimp2lem5  42761
  Copyright terms: Public domain W3C validator