MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta Structured version   Visualization version   GIF version

Theorem fta 25659
Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
fta ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑆

Proof of Theorem fta
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2823 . . . 4 (deg‘𝐹) = (deg‘𝐹)
3 simpl 485 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
4 simpr 487 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (deg‘𝐹) ∈ ℕ)
5 eqid 2823 . . . 4 if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1))
6 eqid 2823 . . . 4 ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) = ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2))
71, 2, 3, 4, 5, 6ftalem2 25653 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑟 ∈ ℝ+𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))
8 simpll 765 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → 𝐹 ∈ (Poly‘𝑆))
9 simplr 767 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → (deg‘𝐹) ∈ ℕ)
10 eqid 2823 . . . 4 {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} = {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟}
11 eqid 2823 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
12 simprl 769 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → 𝑟 ∈ ℝ+)
13 simprr 771 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))
14 fveq2 6672 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
1514breq2d 5080 . . . . . . 7 (𝑦 = 𝑥 → (𝑟 < (abs‘𝑦) ↔ 𝑟 < (abs‘𝑥)))
16 2fveq3 6677 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
1716breq2d 5080 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐹‘0)) < (abs‘(𝐹𝑦)) ↔ (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
1815, 17imbi12d 347 . . . . . 6 (𝑦 = 𝑥 → ((𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))) ↔ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
1918cbvralvw 3451 . . . . 5 (∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))) ↔ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
2013, 19sylib 220 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
211, 2, 8, 9, 10, 11, 12, 20ftalem3 25654 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
227, 21rexlimddv 3293 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
23 simpll 765 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → 𝐹 ∈ (Poly‘𝑆))
24 simplr 767 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → (deg‘𝐹) ∈ ℕ)
25 simprl 769 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → 𝑧 ∈ ℂ)
26 simprr 771 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → (𝐹𝑧) ≠ 0)
271, 2, 23, 24, 25, 26ftalem7 25658 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
2827expr 459 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐹𝑧) ≠ 0 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
2928necon4ad 3037 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (𝐹𝑧) = 0))
3029reximdva 3276 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0))
3122, 30mpd 15 1 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  ifcif 4469   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   < clt 10677  cle 10678   / cdiv 11299  cn 11640  2c2 11695  +crp 12392  abscabs 14595  TopOpenctopn 16697  fldccnfld 20547  Polycply 24776  coeffccoe 24778  degcdgr 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-0p 24273  df-limc 24466  df-dv 24467  df-ply 24780  df-idp 24781  df-coe 24782  df-dgr 24783  df-log 25142  df-cxp 25143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator