MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem2 Structured version   Visualization version   GIF version

Theorem ftalem2 24517
Description: Lemma for fta 24523. There exists some 𝑟 such that 𝐹 has magnitude greater than 𝐹(0) outside the closed ball B(0,r). (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem2.5 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
ftalem2.6 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
Assertion
Ref Expression
ftalem2 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐴   𝑁,𝑟,𝑠,𝑥   𝐹,𝑟,𝑠,𝑥   𝜑,𝑠,𝑥   𝑆,𝑠   𝑇,𝑟,𝑥   𝑈,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝑇(𝑠)   𝑈(𝑠)

Proof of Theorem ftalem2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . . 3 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . 3 𝑁 = (deg‘𝐹)
3 ftalem.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . 3 (𝜑𝑁 ∈ ℕ)
51coef3 23709 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . 6 (𝜑𝐴:ℕ0⟶ℂ)
74nnnn0d 11198 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
86, 7ffvelrnd 6253 . . . . 5 (𝜑 → (𝐴𝑁) ∈ ℂ)
94nnne0d 10912 . . . . . 6 (𝜑𝑁 ≠ 0)
102, 1dgreq0 23742 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
11 fveq2 6088 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
12 dgr0 23739 . . . . . . . . . . 11 (deg‘0𝑝) = 0
1311, 12syl6eq 2659 . . . . . . . . . 10 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
142, 13syl5eq 2655 . . . . . . . . 9 (𝐹 = 0𝑝𝑁 = 0)
1510, 14syl6bir 242 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝑁 = 0))
163, 15syl 17 . . . . . . 7 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1716necon3d 2802 . . . . . 6 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
189, 17mpd 15 . . . . 5 (𝜑 → (𝐴𝑁) ≠ 0)
198, 18absrpcld 13981 . . . 4 (𝜑 → (abs‘(𝐴𝑁)) ∈ ℝ+)
2019rphalfcld 11716 . . 3 (𝜑 → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
21 fveq2 6088 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
2221fveq2d 6092 . . . . 5 (𝑛 = 𝑘 → (abs‘(𝐴𝑛)) = (abs‘(𝐴𝑘)))
2322cbvsumv 14220 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) = Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘))
2423oveq1i 6537 . . 3 𝑛 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑛)) / ((abs‘(𝐴𝑁)) / 2)) = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / ((abs‘(𝐴𝑁)) / 2))
251, 2, 3, 4, 20, 24ftalem1 24516 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
26 ftalem2.5 . . . . . 6 𝑈 = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1))
27 ftalem2.6 . . . . . . . . 9 𝑇 = ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2))
28 plyf 23675 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
293, 28syl 17 . . . . . . . . . . . 12 (𝜑𝐹:ℂ⟶ℂ)
30 0cn 9888 . . . . . . . . . . . 12 0 ∈ ℂ
31 ffvelrn 6250 . . . . . . . . . . . 12 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3229, 30, 31sylancl 692 . . . . . . . . . . 11 (𝜑 → (𝐹‘0) ∈ ℂ)
3332abscld 13969 . . . . . . . . . 10 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
3433, 20rerpdivcld 11735 . . . . . . . . 9 (𝜑 → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) ∈ ℝ)
3527, 34syl5eqel 2691 . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
3635adantr 479 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 𝑇 ∈ ℝ)
37 simpr 475 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℝ)
38 1re 9895 . . . . . . . 8 1 ∈ ℝ
39 ifcl 4079 . . . . . . . 8 ((𝑠 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
4037, 38, 39sylancl 692 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ)
4136, 40ifcld 4080 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)) ∈ ℝ)
4226, 41syl5eqel 2691 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ)
43 0red 9897 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
44 1red 9911 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
45 0lt1 10399 . . . . . . 7 0 < 1
4645a1i 11 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 0 < 1)
47 max1 11849 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
4838, 37, 47sylancr 693 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑠, 𝑠, 1))
49 max1 11849 . . . . . . . . 9 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
5040, 36, 49syl2anc 690 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
5150, 26syl6breqr 4619 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑈)
5244, 40, 42, 48, 51letrd 10045 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → 1 ≤ 𝑈)
5343, 44, 42, 46, 52ltletrd 10048 . . . . 5 ((𝜑𝑠 ∈ ℝ) → 0 < 𝑈)
5442, 53elrpd 11701 . . . 4 ((𝜑𝑠 ∈ ℝ) → 𝑈 ∈ ℝ+)
55 max2 11851 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5638, 37, 55sylancr 693 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ≤ if(1 ≤ 𝑠, 𝑠, 1))
5737, 40, 42, 56, 51letrd 10045 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → 𝑠𝑈)
5857adantr 479 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑠𝑈)
5937adantr 479 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑠 ∈ ℝ)
6042adantr 479 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → 𝑈 ∈ ℝ)
61 abscl 13812 . . . . . . . . . 10 (𝑥 ∈ ℂ → (abs‘𝑥) ∈ ℝ)
6261adantl 480 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (abs‘𝑥) ∈ ℝ)
63 lelttr 9979 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (abs‘𝑥) ∈ ℝ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6459, 60, 62, 63syl3anc 1317 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠𝑈𝑈 < (abs‘𝑥)) → 𝑠 < (abs‘𝑥)))
6558, 64mpand 706 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → 𝑠 < (abs‘𝑥)))
6665imim1d 79 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))))
6729ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝐹:ℂ⟶ℂ)
68 simprl 789 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑥 ∈ ℂ)
6967, 68ffvelrnd 6253 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐹𝑥) ∈ ℂ)
708ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
717ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
7268, 71expcld 12825 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
7370, 72mulcld 9916 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
7469, 73subcld 10243 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
7574abscld 13969 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) ∈ ℝ)
7673abscld 13969 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℝ)
7776rehalfcld 11126 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ)
7875, 77, 76ltsub2d 10486 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
7970, 72absmuld 13987 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))))
8068, 71absexpd 13985 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝑥𝑁)) = ((abs‘𝑥)↑𝑁))
8180oveq2d 6543 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) · (abs‘(𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
8279, 81eqtrd 2643 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) = ((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)))
8382oveq1d 6542 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2))
8470abscld 13969 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℝ)
8584recnd 9924 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐴𝑁)) ∈ ℂ)
8662adantrr 748 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
8786, 71reexpcld 12842 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
8887recnd 9924 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℂ)
89 2cnd 10940 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ∈ ℂ)
90 2ne0 10960 . . . . . . . . . . . . . . 15 2 ≠ 0
9190a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 2 ≠ 0)
9285, 88, 89, 91div23d 10687 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) · ((abs‘𝑥)↑𝑁)) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
9383, 92eqtrd 2643 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) = (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
9493breq2d 4589 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ↔ (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
9576recnd 9924 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘((𝐴𝑁) · (𝑥𝑁))) ∈ ℂ)
96952halvesd 11125 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = (abs‘((𝐴𝑁) · (𝑥𝑁))))
9796oveq1d 6542 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)))
9877recnd 9924 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℂ)
9998, 98pncand 10244 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) + ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
10097, 99eqtr3d 2645 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
101100breq1d 4587 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) − ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
10278, 94, 1013bitr3d 296 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ↔ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))))
10373, 69subcld 10243 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)) ∈ ℂ)
10473, 103abs2difd 13990 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) ≤ (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))))
10573, 69abssubd 13986 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))))
106105oveq2d 6543 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))))
10773, 69nncand 10248 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥))) = (𝐹𝑥))
108107fveq2d 6092 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(((𝐴𝑁) · (𝑥𝑁)) − (((𝐴𝑁) · (𝑥𝑁)) − (𝐹𝑥)))) = (abs‘(𝐹𝑥)))
109104, 106, 1083brtr3d 4608 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥)))
11076, 75resubcld 10309 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ)
11169abscld 13969 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹𝑥)) ∈ ℝ)
112 ltletr 9980 . . . . . . . . . . . 12 ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11377, 110, 111, 112syl3anc 1317 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) ≤ (abs‘(𝐹𝑥))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
114109, 113mpan2d 705 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) − (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))))) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
115102, 114sylbid 228 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))))
11633ad2antrr 757 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) ∈ ℝ)
11720ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ+)
118117rpred 11704 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐴𝑁)) / 2) ∈ ℝ)
119118, 86remulcld 9926 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ∈ ℝ)
12093, 77eqeltrrd 2688 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
12136adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 ∈ ℝ)
12242adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 ∈ ℝ)
123 max2 11851 . . . . . . . . . . . . . . . . . 18 ((if(1 ≤ 𝑠, 𝑠, 1) ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
12440, 36, 123syl2anc 690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℝ) → 𝑇 ≤ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ 𝑇, 𝑇, if(1 ≤ 𝑠, 𝑠, 1)))
125124, 26syl6breqr 4619 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℝ) → 𝑇𝑈)
126125adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇𝑈)
127 simprr 791 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑈 < (abs‘𝑥))
128121, 122, 86, 126, 127lelttrd 10046 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
12927, 128syl5eqbrr 4613 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥))
130116, 86, 117ltdivmuld 11755 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) / ((abs‘(𝐴𝑁)) / 2)) < (abs‘𝑥) ↔ (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥))))
131129, 130mpbid 220 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)))
13286recnd 9924 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
133132exp1d 12820 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) = (abs‘𝑥))
134 1red 9911 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ∈ ℝ)
13552adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ 𝑈)
136134, 122, 86, 135, 127lelttrd 10046 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 < (abs‘𝑥))
137134, 86, 136ltled 10036 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
1384ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ ℕ)
139 nnuz 11555 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
140138, 139syl6eleq 2697 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘1))
14186, 137, 140leexp2ad 12858 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥)↑1) ≤ ((abs‘𝑥)↑𝑁))
142133, 141eqbrtrrd 4601 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁))
14386, 87, 117lemul2d 11748 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘𝑥) ≤ ((abs‘𝑥)↑𝑁) ↔ (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))))
144142, 143mpbid 220 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐴𝑁)) / 2) · (abs‘𝑥)) ≤ (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
145116, 119, 120, 131, 144ltletrd 10048 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)))
146145, 93breqtrrd 4605 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2))
147 lttr 9965 . . . . . . . . . . 11 (((abs‘(𝐹‘0)) ∈ ℝ ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∈ ℝ ∧ (abs‘(𝐹𝑥)) ∈ ℝ) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
148116, 77, 111, 147syl3anc 1317 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘(𝐹‘0)) < ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) ∧ ((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥))) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
149146, 148mpand 706 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → (((abs‘((𝐴𝑁) · (𝑥𝑁))) / 2) < (abs‘(𝐹𝑥)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
150115, 149syld 45 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑈 < (abs‘𝑥))) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
151150expr 640 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → (𝑈 < (abs‘𝑥) → ((abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁)) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
152151a2d 29 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑈 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
15366, 152syld 45 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ 𝑥 ∈ ℂ) → ((𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
154153ralimdva 2944 . . . 4 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
155 breq1 4580 . . . . . . 7 (𝑟 = 𝑈 → (𝑟 < (abs‘𝑥) ↔ 𝑈 < (abs‘𝑥)))
156155imbi1d 329 . . . . . 6 (𝑟 = 𝑈 → ((𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) ↔ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
157156ralbidv 2968 . . . . 5 (𝑟 = 𝑈 → (∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))) ↔ ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
158157rspcev 3281 . . . 4 ((𝑈 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ (𝑈 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
15954, 154, 158syl6an 565 . . 3 ((𝜑𝑠 ∈ ℝ) → (∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
160159rexlimdva 3012 . 2 (𝜑 → (∃𝑠 ∈ ℝ ∀𝑥 ∈ ℂ (𝑠 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (((abs‘(𝐴𝑁)) / 2) · ((abs‘𝑥)↑𝑁))) → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
16125, 160mpd 15 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  ifcif 4035   class class class wbr 4577  wf 5786  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  0cn0 11139  cuz 11519  +crp 11664  ...cfz 12152  cexp 12677  abscabs 13768  Σcsu 14210  0𝑝c0p 23159  Polycply 23661  coeffccoe 23663  degcdgr 23664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ico 12008  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-0p 23160  df-ply 23665  df-coe 23667  df-dgr 23668
This theorem is referenced by:  fta  24523
  Copyright terms: Public domain W3C validator