Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem1 Structured version   Visualization version   GIF version

Theorem ftc1anclem1 33152
Description: Lemma for ftc1anc 33160- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 23348, but this proof avoids ax-cc 9209. (Contributed by Brendan Leahy, 18-Jun-2018.)
Assertion
Ref Expression
ftc1anclem1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)

Proof of Theorem ftc1anclem1
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6318 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ)
21recnd 10020 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
3 id 22 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
43feqmptd 6211 . . . 4 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
5 absf 14019 . . . . . 6 abs:ℂ⟶ℝ
65a1i 11 . . . . 5 (𝐹:𝐴⟶ℝ → abs:ℂ⟶ℝ)
76feqmptd 6211 . . . 4 (𝐹:𝐴⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
8 fveq2 6153 . . . 4 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
92, 4, 7, 8fmptco 6357 . . 3 (𝐹:𝐴⟶ℝ → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
109adantr 481 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
112abscld 14117 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (abs‘(𝐹𝑡)) ∈ ℝ)
12 eqid 2621 . . . . 5 (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡)))
1311, 12fmptd 6346 . . . 4 (𝐹:𝐴⟶ℝ → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
1413adantr 481 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
15 fdm 6013 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
1615adantr 481 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 = 𝐴)
17 mbfdm 23318 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1817adantl 482 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 ∈ dom vol)
1916, 18eqeltrrd 2699 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → 𝐴 ∈ dom vol)
20 rexr 10037 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21 elioopnf 12217 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2220, 21syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2311biantrurd 529 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2423bicomd 213 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡))) ↔ 𝑥 < (abs‘(𝐹𝑡))))
2522, 24sylan9bbr 736 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ 𝑥 < (abs‘(𝐹𝑡))))
26 ltnle 10069 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2726ancoms 469 . . . . . . . . . . . 12 (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2811, 27sylan 488 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
29 absle 13997 . . . . . . . . . . . . . . 15 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
301, 29sylan 488 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
31 renegcl 10296 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
32 lenlt 10068 . . . . . . . . . . . . . . . . 17 ((-𝑥 ∈ ℝ ∧ (𝐹𝑡) ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
3331, 1, 32syl2anr 495 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
341biantrurd 529 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((𝐹𝑡) < -𝑥 ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3531rexrd 10041 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ*)
36 elioomnf 12218 . . . . . . . . . . . . . . . . . . . 20 (-𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3837bicomd 213 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥) ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3934, 38sylan9bb 735 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) < -𝑥 ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4039notbid 308 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑡) < -𝑥 ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4133, 40bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
42 lenlt 10068 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
431, 42sylan 488 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
441biantrurd 529 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (𝐹𝑡) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
45 elioopnf 12217 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4620, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4746bicomd 213 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡)) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4844, 47sylan9bb 735 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (𝐹𝑡) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4948notbid 308 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5043, 49bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5141, 50anbi12d 746 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥) ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5230, 51bitrd 268 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5352notbid 308 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
54 elun 3736 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)))
55 oran 517 . . . . . . . . . . . . 13 (((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5654, 55bitri 264 . . . . . . . . . . . 12 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5753, 56syl6bbr 278 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5825, 28, 573bitrd 294 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5958an32s 845 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6059rabbidva 3179 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))})
6112mptpreima 5592 . . . . . . . 8 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)}
62 eqid 2621 . . . . . . . . 9 (𝑡𝐴 ↦ (𝐹𝑡)) = (𝑡𝐴 ↦ (𝐹𝑡))
6362mptpreima 5592 . . . . . . . 8 ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))}
6460, 61, 633eqtr4g 2680 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
65 simpl 473 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
6665feqmptd 6211 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6766cnveqd 5263 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6867imaeq1d 5429 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6964, 68eqtr4d 2658 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
70 imaundi 5509 . . . . . 6 (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞)))
7169, 70syl6eq 2671 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
7271adantlr 750 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
73 mbfima 23322 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)-𝑥)) ∈ dom vol)
74 mbfima 23322 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
75 unmbl 23228 . . . . . . 7 (((𝐹 “ (-∞(,)-𝑥)) ∈ dom vol ∧ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7673, 74, 75syl2anc 692 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7776ancoms 469 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7877adantr 481 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7972, 78eqeltrd 2698 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
80 abslt 13996 . . . . . . . . . . 11 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
811, 80sylan 488 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
82 elioomnf 12218 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8320, 82syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8411biantrurd 529 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8584bicomd 213 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8683, 85sylan9bbr 736 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8735, 20jca 554 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (-𝑥 ∈ ℝ*𝑥 ∈ ℝ*))
881rexrd 10041 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ*)
89 elioo5 12181 . . . . . . . . . . . 12 ((-𝑥 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
90893expa 1262 . . . . . . . . . . 11 (((-𝑥 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9187, 88, 90syl2anr 495 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9281, 86, 913bitr4d 300 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9392an32s 845 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9493rabbidva 3179 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)})
9512mptpreima 5592 . . . . . . 7 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)}
9662mptpreima 5592 . . . . . . 7 ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)}
9794, 95, 963eqtr4g 2680 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9867imaeq1d 5429 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9997, 98eqtr4d 2658 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
10099adantlr 750 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
101 mbfima 23322 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
102101ancoms 469 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
103102adantr 481 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
104100, 103eqeltrd 2698 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
10514, 19, 79, 104ismbf2d 23331 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
10610, 105eqeltrd 2698 1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  {crab 2911  cun 3557   class class class wbr 4618  cmpt 4678  ccnv 5078  dom cdm 5079  cima 5082  ccom 5083  wf 5848  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  +∞cpnf 10023  -∞cmnf 10024  *cxr 10025   < clt 10026  cle 10027  -cneg 10219  (,)cioo 12125  abscabs 13916  volcvol 23155  MblFncmbf 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xadd 11899  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-xmet 19671  df-met 19672  df-ovol 23156  df-vol 23157  df-mbf 23311
This theorem is referenced by:  ftc1anclem2  33153  ftc1anclem4  33155  ftc1anclem5  33156  ftc1anclem6  33157  ftc1anclem8  33159
  Copyright terms: Public domain W3C validator