Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Visualization version   GIF version

Theorem ftc1cnnc 34970
Description: Choice-free proof of ftc1cn 24643. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cnnc (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑥,𝐵,𝑡   𝑥,𝐹,𝑡   𝜑,𝑥,𝑡
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cnnc
Dummy variables 𝑦 𝑧 𝑠 𝑢 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 24508 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
32ffund 6521 . . 3 (𝜑 → Fun (ℝ D 𝐺))
4 ax-resscn 10597 . . . . . . 7 ℝ ⊆ ℂ
54a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
6 ftc1cnnc.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
7 ftc1cnnc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 ftc1cnnc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 ftc1cnnc.le . . . . . . 7 (𝜑𝐴𝐵)
10 ssidd 3993 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
11 ioossre 12801 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
13 ftc1cnnc.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
14 ftc1cnnc.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
15 cncff 23504 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
176, 7, 8, 9, 10, 12, 13, 16ftc1lem2 24636 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
18 iccssre 12821 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
197, 8, 18syl2anc 586 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
20 eqid 2824 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 23414 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
225, 17, 19, 21, 20dvbssntr 24501 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
23 iccntr 23432 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
247, 8, 23syl2anc 586 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2522, 24sseqtrd 4010 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
26 retop 23373 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
2721, 26eqeltrri 2913 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top
2827a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top)
2919adantr 483 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
30 iooretop 23377 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
3130, 21eleqtri 2914 . . . . . . . . 9 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
33 ioossicc 12825 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3433a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
35 uniretop 23374 . . . . . . . . . 10 ℝ = (topGen‘ran (,))
3621unieqi 4854 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3735, 36eqtri 2847 . . . . . . . . 9 ℝ = ((TopOpen‘ℂfld) ↾t ℝ)
3837ssntr 21669 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t ℝ) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
3928, 29, 32, 34, 38syl22anc 836 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
40 simpr 487 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
4139, 40sseldd 3971 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
4216ffvelrnda 6854 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
43 cnxmet 23384 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
4411, 4sstri 3979 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
45 xmetres2 22974 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4643, 44, 45mp2an 690 . . . . . . . . . . 11 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵))
4746a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4843a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
49 ssid 3992 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
50 eqid 2824 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5120cnfldtopon 23394 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5251toponrestid 21532 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
5320, 50, 52cncfcn 23520 . . . . . . . . . . . . . . 15 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
5444, 49, 53mp2an 690 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
5514, 54eleqtrdi 2926 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
56 resttopon 21772 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
5751, 44, 56mp2an 690 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
5857toponunii 21527 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5958eleq2i 2907 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝐴(,)𝐵) ↔ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
6059biimpi 218 . . . . . . . . . . . . 13 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
61 eqid 2824 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
6261cncnpi 21889 . . . . . . . . . . . . 13 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
6355, 60, 62syl2an 597 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
64 eqid 2824 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) = ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))
6520cnfldtopn 23393 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
66 eqid 2824 . . . . . . . . . . . . . . . 16 (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6764, 65, 66metrest 23137 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))))
6843, 44, 67mp2an 690 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6968oveq1i 7169 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))
7069fveq1i 6674 . . . . . . . . . . . 12 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐) = (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐)
7163, 70eleqtrdi 2926 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
7271adantr 483 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
73 simpr 487 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
7466, 65metcnpi2 23158 . . . . . . . . . 10 (((((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
7547, 48, 72, 73, 74syl22anc 836 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
76 simpr 487 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑢 ∈ (𝐴(,)𝐵))
77 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
7876, 77ovresd 7318 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (𝑢(abs ∘ − )𝑐))
79 elioore 12771 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℝ)
8079recnd 10672 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℂ)
8144sseli 3966 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
8281ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
83 eqid 2824 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
8483cnmetdval 23382 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8580, 82, 84syl2an2 684 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8678, 85eqtrd 2859 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (abs‘(𝑢𝑐)))
8786breq1d 5079 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 ↔ (abs‘(𝑢𝑐)) < 𝑣))
8816ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
8988ffvelrnda 6854 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
9042ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
9183cnmetdval 23382 . . . . . . . . . . . . . . . 16 (((𝐹𝑢) ∈ ℂ ∧ (𝐹𝑐) ∈ ℂ) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9289, 90, 91syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9392breq1d 5079 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤 ↔ (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
9487, 93imbi12d 347 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
9594ralbidva 3199 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
96 simprll 777 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}))
97 eldifsni 4725 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧𝑐)
9896, 97syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧𝑐)
9919ssdifssd 4122 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℝ)
10099sselda 3970 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → 𝑧 ∈ ℝ)
101100ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → 𝑧 ∈ ℝ)
102101ad2ant2r 745 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ℝ)
103 elioore 12771 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
104103ad3antlr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ ℝ)
105102, 104lttri2d 10782 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (𝑧𝑐 ↔ (𝑧 < 𝑐𝑐 < 𝑧)))
106105biimpa 479 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (𝑧 < 𝑐𝑐 < 𝑧))
107 fveq2 6673 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
108107oveq1d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → ((𝐺𝑠) − (𝐺𝑐)) = ((𝐺𝑧) − (𝐺𝑐)))
109 oveq1 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → (𝑠𝑐) = (𝑧𝑐))
110108, 109oveq12d 7177 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 = 𝑧 → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
111 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) = (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))
112 ovex 7192 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) ∈ V
113110, 111, 112fvmpt 6771 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
114113ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
115114ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
11617ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
117 eldifi 4106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧 ∈ (𝐴[,]𝐵))
118117ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → 𝑧 ∈ (𝐴[,]𝐵))
119118ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ (𝐴[,]𝐵))
120116, 119ffvelrnd 6855 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑧) ∈ ℂ)
12133sseli 3966 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
12217ffvelrnda 6854 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐺𝑐) ∈ ℂ)
123121, 122sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐺𝑐) ∈ ℂ)
124123ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑐) ∈ ℂ)
125102adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℝ)
126125recnd 10672 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℂ)
12781ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑐 ∈ ℂ)
128 ltne 10740 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑐𝑧)
129128necomd 3074 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑧𝑐)
130102, 129sylan 582 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧𝑐)
131120, 124, 126, 127, 130div2subd 11469 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
132115, 131eqtrd 2859 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
133132fvoveq1d 7181 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))))
1347ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴 ∈ ℝ)
1358ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐵 ∈ ℝ)
1369ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴𝐵)
13714ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
13813ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ 𝐿1)
139 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴(,)𝐵))
140 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑤 ∈ ℝ+)
141 simplrr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑣 ∈ ℝ+)
142 simprlr 778 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
143 fvoveq1 7182 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑦 → (abs‘(𝑢𝑐)) = (abs‘(𝑦𝑐)))
144143breq1d 5079 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑦 → ((abs‘(𝑢𝑐)) < 𝑣 ↔ (abs‘(𝑦𝑐)) < 𝑣))
145144imbrov2fvoveq 7184 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑦 → (((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ↔ ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤)))
146145rspccva 3625 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
147142, 146sylan 582 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
14896, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ (𝐴[,]𝐵))
149 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑧𝑐)) < 𝑣)
150121ad3antlr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴[,]𝐵))
151103recnd 10672 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
152151subidd 10988 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ (𝐴(,)𝐵) → (𝑐𝑐) = 0)
153152abs00bd 14654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ (𝐴(,)𝐵) → (abs‘(𝑐𝑐)) = 0)
154153ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) = 0)
155141rpgt0d 12437 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 0 < 𝑣)
156154, 155eqbrtrd 5091 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) < 𝑣)
1576, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 148, 149, 150, 156ftc1cnnclem 34969 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))) < 𝑤)
158133, 157eqbrtrd 5091 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
159113fvoveq1d 7181 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
160159ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
161160ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
1626, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 150, 156, 148, 149ftc1cnnclem 34969 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))) < 𝑤)
163161, 162eqbrtrd 5091 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
164158, 163jaodan 954 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ (𝑧 < 𝑐𝑐 < 𝑧)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
165106, 164syldan 593 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
16698, 165mpdan 685 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
167166expr 459 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((abs‘(𝑧𝑐)) < 𝑣 → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
168167adantld 493 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
169168expr 459 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
170169ralrimdva 3192 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17195, 170sylbid 242 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
172171anassrs 470 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
173172reximdva 3277 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17475, 173mpd 15 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
175174ralrimiva 3185 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
17617adantr 483 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
17719, 4sstrdi 3982 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
178177adantr 483 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℂ)
179121adantl 484 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
180176, 178, 179dvlem 24497 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) ∈ ℂ)
181180fmpttd 6882 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))):((𝐴[,]𝐵) ∖ {𝑐})⟶ℂ)
182177ssdifssd 4122 . . . . . . . . 9 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
183182adantr 483 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
18481adantl 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
185181, 183, 184ellimc3 24480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐) ↔ ((𝐹𝑐) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))))
18642, 175, 185mpbir2and 711 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))
187 eqid 2824 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
188187, 20, 111, 5, 17, 19eldv 24499 . . . . . . 7 (𝜑 → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
189188adantr 483 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
19041, 186, 189mpbir2and 711 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐(ℝ D 𝐺)(𝐹𝑐))
191 vex 3500 . . . . . 6 𝑐 ∈ V
192 fvex 6686 . . . . . 6 (𝐹𝑐) ∈ V
193191, 192breldm 5780 . . . . 5 (𝑐(ℝ D 𝐺)(𝐹𝑐) → 𝑐 ∈ dom (ℝ D 𝐺))
194190, 193syl 17 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ dom (ℝ D 𝐺))
19525, 194eqelssd 3991 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196 df-fn 6361 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
1973, 195, 196sylanbrc 585 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
19816ffnd 6518 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
1993adantr 483 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
200 funbrfv 6719 . . 3 (Fun (ℝ D 𝐺) → (𝑐(ℝ D 𝐺)(𝐹𝑐) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐)))
201199, 190, 200sylc 65 . 2 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐))
202197, 198, 201eqfnfvd 6808 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  cdif 3936  wss 3939  {csn 4570   cuni 4841   class class class wbr 5069  cmpt 5149   × cxp 5556  dom cdm 5558  ran crn 5559  cres 5560  ccom 5562  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  +crp 12392  (,)cioo 12741  [,]cicc 12744  abscabs 14596  t crest 16697  TopOpenctopn 16698  topGenctg 16714  ∞Metcxmet 20533  MetOpencmopn 20538  fldccnfld 20548  Topctop 21504  TopOnctopon 21521  intcnt 21628   Cn ccn 21835   CnP ccnp 21836  cnccncf 23487  𝐿1cibl 24221  citg 24222   lim climc 24463   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-symdif 4222  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24467  df-dv 24468
This theorem is referenced by:  ftc2nc  34980
  Copyright terms: Public domain W3C validator