MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem6 Structured version   Visualization version   GIF version

Theorem ftc1lem6 24637
Description: Lemma for ftc1 24638. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
Assertion
Ref Expression
ftc1lem6 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Distinct variable groups:   𝑥,𝑡,𝑧,𝐶   𝑡,𝐷,𝑥,𝑧   𝑧,𝐺   𝑡,𝐴,𝑥,𝑧   𝑡,𝐵,𝑥,𝑧   𝜑,𝑡,𝑥,𝑧   𝑡,𝐹,𝑥,𝑧   𝑥,𝐿,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑧,𝑡)   𝐾(𝑥,𝑧,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1lem6
Dummy variables 𝑠 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . . 4 (𝜑𝐴𝐵)
5 ftc1.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . . 4 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
8 ftc1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
9 ftc1.f . . . 4 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
10 ftc1.j . . . 4 𝐽 = (𝐿t ℝ)
11 ftc1.k . . . 4 𝐾 = (𝐿t 𝐷)
12 ftc1.l . . . 4 𝐿 = (TopOpen‘ℂfld)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ftc1lem3 24634 . . 3 (𝜑𝐹:𝐷⟶ℂ)
145, 8sseldd 3967 . . 3 (𝜑𝐶𝐷)
1513, 14ffvelrnd 6851 . 2 (𝜑 → (𝐹𝐶) ∈ ℂ)
16 cnxmet 23380 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 ax-resscn 10593 . . . . . . . 8 ℝ ⊆ ℂ
186, 17sstrdi 3978 . . . . . . 7 (𝜑𝐷 ⊆ ℂ)
1918adantr 483 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → 𝐷 ⊆ ℂ)
20 xmetres2 22970 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2116, 19, 20sylancr 589 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2216a1i 11 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
23 eqid 2821 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
2412cnfldtopn 23389 . . . . . . . . . . . 12 𝐿 = (MetOpen‘(abs ∘ − ))
25 eqid 2821 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2623, 24, 25metrest 23133 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2716, 18, 26sylancr 589 . . . . . . . . . 10 (𝜑 → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2811, 27syl5eq 2868 . . . . . . . . 9 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2928oveq1d 7170 . . . . . . . 8 (𝜑 → (𝐾 CnP 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿))
3029fveq1d 6671 . . . . . . 7 (𝜑 → ((𝐾 CnP 𝐿)‘𝐶) = (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
319, 30eleqtrd 2915 . . . . . 6 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
3231adantr 483 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
33 simpr 487 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3425, 24metcnpi2 23154 . . . . 5 (((((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
3521, 22, 32, 33, 34syl22anc 836 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
36 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦𝐷)
3714ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶𝐷)
3836, 37ovresd 7314 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (𝑦(abs ∘ − )𝐶))
3918adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐷 ⊆ ℂ)
4039sselda 3966 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
41 iccssre 12817 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
422, 3, 41syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
4342, 17sstrdi 3978 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
44 ioossicc 12821 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4544, 8sseldi 3964 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4643, 45sseldd 3967 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
4746ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
48 eqid 2821 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
4948cnmetdval 23378 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5040, 47, 49syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5138, 50eqtrd 2856 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (abs‘(𝑦𝐶)))
5251breq1d 5075 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 ↔ (abs‘(𝑦𝐶)) < 𝑣))
5313adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:𝐷⟶ℂ)
5453ffvelrnda 6850 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
5515ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝐶) ∈ ℂ)
5648cnmetdval 23378 . . . . . . . . . . 11 (((𝐹𝑦) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5754, 55, 56syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5857breq1d 5075 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤 ↔ (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
5952, 58imbi12d 347 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
6059ralbidva 3196 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
61 simprll 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
62 eldifsni 4721 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → 𝑠𝐶)
6361, 62syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠𝐶)
642ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴 ∈ ℝ)
653ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐵 ∈ ℝ)
664ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴𝐵)
675ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (𝐴(,)𝐵) ⊆ 𝐷)
686ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐷 ⊆ ℝ)
697ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ 𝐿1)
708ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐶 ∈ (𝐴(,)𝐵))
719ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
72 ftc1.h . . . . . . . . . . . . 13 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
73 simplrl 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑤 ∈ ℝ+)
74 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑣 ∈ ℝ+)
75 simprlr 778 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
76 fvoveq1 7178 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (abs‘(𝑦𝐶)) = (abs‘(𝑢𝐶)))
7776breq1d 5075 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → ((abs‘(𝑦𝐶)) < 𝑣 ↔ (abs‘(𝑢𝐶)) < 𝑣))
7877imbrov2fvoveq 7180 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ↔ ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤)))
7978rspccva 3621 . . . . . . . . . . . . . 14 ((∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8075, 79sylan 582 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8161eldifad 3947 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ (𝐴[,]𝐵))
82 simprr 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘(𝑠𝐶)) < 𝑣)
831, 64, 65, 66, 67, 68, 69, 70, 71, 10, 11, 12, 72, 73, 74, 80, 81, 82ftc1lem5 24636 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑠𝐶) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8463, 83mpdan 685 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8584expr 459 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((abs‘(𝑠𝐶)) < 𝑣 → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8685adantld 493 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8786expr 459 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8887ralrimdva 3189 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8960, 88sylbid 242 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9089anassrs 470 . . . . 5 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9190reximdva 3274 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9235, 91mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
9392ralrimiva 3182 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
941, 2, 3, 4, 5, 6, 7, 13ftc1lem2 24632 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
9594, 43, 45dvlem 24493 . . . 4 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
9695, 72fmptd 6877 . . 3 (𝜑𝐻:((𝐴[,]𝐵) ∖ {𝐶})⟶ℂ)
9743ssdifssd 4118 . . 3 (𝜑 → ((𝐴[,]𝐵) ∖ {𝐶}) ⊆ ℂ)
9896, 97, 46ellimc3 24476 . 2 (𝜑 → ((𝐹𝐶) ∈ (𝐻 lim 𝐶) ↔ ((𝐹𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))))
9915, 93, 98mpbir2and 711 1 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  wss 3935  {csn 4566   class class class wbr 5065  cmpt 5145   × cxp 5552  cres 5556  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  cc 10534  cr 10535   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  +crp 12388  (,)cioo 12737  [,]cicc 12740  abscabs 14592  t crest 16693  TopOpenctopn 16694  ∞Metcxmet 20529  MetOpencmopn 20534  fldccnfld 20544   CnP ccnp 21832  𝐿1cibl 24217  citg 24218   lim climc 24459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-symdif 4218  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-ofr 7409  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-ovol 24064  df-vol 24065  df-mbf 24219  df-itg1 24220  df-itg2 24221  df-ibl 24222  df-itg 24223  df-0p 24270  df-limc 24463
This theorem is referenced by:  ftc1  24638
  Copyright terms: Public domain W3C validator