Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2re Structured version   Visualization version   GIF version

Theorem ftc2re 30804
 Description: The Fundamental Theorem of Calculus, part two, for functions continuous on 𝐷. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
ftc2re.le (𝜑𝐴𝐵)
ftc2re.f (𝜑𝐹:𝐸⟶ℂ)
ftc2re.1 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
Assertion
Ref Expression
ftc2re (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝑡,𝐹   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝐷(𝑡)   𝐸(𝑡)

Proof of Theorem ftc2re
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
2 ioossre 12273 . . . . . 6 (𝐶(,)𝐷) ⊆ ℝ
31, 2eqsstri 3668 . . . . 5 𝐸 ⊆ ℝ
43a1i 11 . . . 4 (𝜑𝐸 ⊆ ℝ)
5 ftc2re.a . . . 4 (𝜑𝐴𝐸)
64, 5sseldd 3637 . . 3 (𝜑𝐴 ∈ ℝ)
7 ftc2re.b . . . 4 (𝜑𝐵𝐸)
84, 7sseldd 3637 . . 3 (𝜑𝐵 ∈ ℝ)
9 ftc2re.le . . 3 (𝜑𝐴𝐵)
10 ax-resscn 10031 . . . . . . 7 ℝ ⊆ ℂ
1110a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
12 ftc2re.f . . . . . 6 (𝜑𝐹:𝐸⟶ℂ)
13 iccssre 12293 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
146, 8, 13syl2anc 694 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
15 eqid 2651 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1615tgioo2 22653 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16dvres 23720 . . . . . 6 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ) ∧ (𝐸 ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
1811, 12, 4, 14, 17syl22anc 1367 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
19 iccntr 22671 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
206, 8, 19syl2anc 694 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2120reseq2d 5428 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
2218, 21eqtrd 2685 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) = ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
23 ioossicc 12297 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2423a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
251, 5, 7fct2relem 30803 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
2624, 25sstrd 3646 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
27 ftc2re.1 . . . . 5 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
28 rescncf 22747 . . . . 5 ((𝐴(,)𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
2926, 27, 28sylc 65 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
3022, 29eqeltrd 2730 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
31 ioombl 23379 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
3231a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
33 cnmbf 23471 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
3432, 29, 33syl2anc 694 . . . . 5 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn)
35 dmres 5454 . . . . . . 7 dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))
3635fveq2i 6232 . . . . . 6 (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) = (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)))
37 cncff 22743 . . . . . . . . . . . 12 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (ℝ D 𝐹):𝐸⟶ℂ)
3827, 37syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):𝐸⟶ℂ)
39 fdm 6089 . . . . . . . . . . 11 ((ℝ D 𝐹):𝐸⟶ℂ → dom (ℝ D 𝐹) = 𝐸)
4038, 39syl 17 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = 𝐸)
4140ineq2d 3847 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = ((𝐴(,)𝐵) ∩ 𝐸))
42 df-ss 3621 . . . . . . . . . 10 ((𝐴(,)𝐵) ⊆ 𝐸 ↔ ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4326, 42sylib 208 . . . . . . . . 9 (𝜑 → ((𝐴(,)𝐵) ∩ 𝐸) = (𝐴(,)𝐵))
4441, 43eqtrd 2685 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹)) = (𝐴(,)𝐵))
4544fveq2d 6233 . . . . . . 7 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) = (vol‘(𝐴(,)𝐵)))
46 volioo 23383 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
476, 8, 9, 46syl3anc 1366 . . . . . . . 8 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
488, 6resubcld 10496 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
4947, 48eqeltrd 2730 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
5045, 49eqeltrd 2730 . . . . . 6 (𝜑 → (vol‘((𝐴(,)𝐵) ∩ dom (ℝ D 𝐹))) ∈ ℝ)
5136, 50syl5eqel 2734 . . . . 5 (𝜑 → (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ)
52 rescncf 22747 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ 𝐸 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5325, 52syl 17 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5427, 53mpd 15 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
55 cniccbdd 23276 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
566, 8, 54, 55syl3anc 1366 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥)
5735, 44syl5eq 2697 . . . . . . . . . . 11 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
5857, 24eqsstrd 3672 . . . . . . . . . 10 (𝜑 → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
59 ssralv 3699 . . . . . . . . . 10 (dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6058, 59syl 17 . . . . . . . . 9 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6160adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥))
6258adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵))
6362sselda 3636 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
64 fvres 6245 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
6563, 64syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
66 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)))
6757ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) = (𝐴(,)𝐵))
6866, 67eleqtrd 2732 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → 𝑦 ∈ (𝐴(,)𝐵))
69 fvres 6245 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦) = ((ℝ D 𝐹)‘𝑦))
7165, 70eqtr4d 2688 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦))
7271fveq2d 6233 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → (abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) = (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)))
7372breq1d 4695 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 ↔ (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7473biimpd 219 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) → ((abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → (abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7574ralimdva 2991 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7661, 75syld 47 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7776reximdva 3046 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘(((ℝ D 𝐹) ↾ (𝐴[,]𝐵))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥))
7856, 77mpd 15 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥)
79 bddibl 23651 . . . . 5 ((((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ MblFn ∧ (vol‘dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom ((ℝ D 𝐹) ↾ (𝐴(,)𝐵))(abs‘(((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑦)) ≤ 𝑥) → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
8034, 51, 78, 79syl3anc 1366 . . . 4 (𝜑 → ((ℝ D 𝐹) ↾ (𝐴(,)𝐵)) ∈ 𝐿1)
8122, 80eqeltrd 2730 . . 3 (𝜑 → (ℝ D (𝐹 ↾ (𝐴[,]𝐵))) ∈ 𝐿1)
82 dvcn 23729 . . . . 5 (((ℝ ⊆ ℂ ∧ 𝐹:𝐸⟶ℂ ∧ 𝐸 ⊆ ℝ) ∧ dom (ℝ D 𝐹) = 𝐸) → 𝐹 ∈ (𝐸cn→ℂ))
8311, 12, 4, 40, 82syl31anc 1369 . . . 4 (𝜑𝐹 ∈ (𝐸cn→ℂ))
84 rescncf 22747 . . . . 5 ((𝐴[,]𝐵) ⊆ 𝐸 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8525, 84syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐸cn→ℂ) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
8683, 85mpd 15 . . 3 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
876, 8, 9, 30, 81, 86ftc2 23852 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)))
8822fveq1d 6231 . . . . 5 (𝜑 → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡))
89 fvres 6245 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) → (((ℝ D 𝐹) ↾ (𝐴(,)𝐵))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
9088, 89sylan9eq 2705 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
9190ralrimiva 2995 . . 3 (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
92 itgeq2 23589 . . 3 (∀𝑡 ∈ (𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) = ((ℝ D 𝐹)‘𝑡) → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
9391, 92syl 17 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D (𝐹 ↾ (𝐴[,]𝐵)))‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
946rexrd 10127 . . . . 5 (𝜑𝐴 ∈ ℝ*)
958rexrd 10127 . . . . 5 (𝜑𝐵 ∈ ℝ*)
96 ubicc2 12327 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
9794, 95, 9, 96syl3anc 1366 . . . 4 (𝜑𝐵 ∈ (𝐴[,]𝐵))
9897fvresd 6246 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) = (𝐹𝐵))
99 lbicc2 12326 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
10094, 95, 9, 99syl3anc 1366 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
101100fvresd 6246 . . 3 (𝜑 → ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴) = (𝐹𝐴))
10298, 101oveq12d 6708 . 2 (𝜑 → (((𝐹 ↾ (𝐴[,]𝐵))‘𝐵) − ((𝐹 ↾ (𝐴[,]𝐵))‘𝐴)) = ((𝐹𝐵) − (𝐹𝐴)))
10387, 93, 1023eqtr3d 2693 1 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ∩ cin 3606   ⊆ wss 3607   class class class wbr 4685  dom cdm 5143  ran crn 5144   ↾ cres 5145  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  ℝ*cxr 10111   ≤ cle 10113   − cmin 10304  (,)cioo 12213  [,]cicc 12216  abscabs 14018  TopOpenctopn 16129  topGenctg 16145  ℂfldccnfld 19794  intcnt 20869  –cn→ccncf 22726  volcvol 23278  MblFncmbf 23428  𝐿1cibl 23431  ∫citg 23432   D cdv 23672 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-ibl 23436  df-itg 23437  df-0p 23482  df-limc 23675  df-dv 23676 This theorem is referenced by:  fdvposlt  30805  fdvposle  30807  itgexpif  30812
 Copyright terms: Public domain W3C validator