MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthepi Structured version   Visualization version   GIF version

Theorem fthepi 17197
Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthepi.e 𝐸 = (Epi‘𝐶)
fthepi.p 𝑃 = (Epi‘𝐷)
fthepi.1 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
Assertion
Ref Expression
fthepi (𝜑𝑅 ∈ (𝑋𝐸𝑌))

Proof of Theorem fthepi
StepHypRef Expression
1 eqid 2821 . . . 4 (oppCat‘𝐶) = (oppCat‘𝐶)
2 fthmon.b . . . 4 𝐵 = (Base‘𝐶)
31, 2oppcbas 16987 . . 3 𝐵 = (Base‘(oppCat‘𝐶))
4 eqid 2821 . . 3 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
5 eqid 2821 . . . 4 (oppCat‘𝐷) = (oppCat‘𝐷)
6 fthmon.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
71, 5, 6fthoppc 17192 . . 3 (𝜑𝐹((oppCat‘𝐶) Faith (oppCat‘𝐷))tpos 𝐺)
8 fthmon.y . . 3 (𝜑𝑌𝐵)
9 fthmon.x . . 3 (𝜑𝑋𝐵)
10 fthmon.r . . . 4 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
11 fthmon.h . . . . 5 𝐻 = (Hom ‘𝐶)
1211, 1oppchom 16984 . . . 4 (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)
1310, 12eleqtrrdi 2924 . . 3 (𝜑𝑅 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋))
14 eqid 2821 . . 3 (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶))
15 eqid 2821 . . 3 (Mono‘(oppCat‘𝐷)) = (Mono‘(oppCat‘𝐷))
16 ovtpos 7906 . . . . . 6 (𝑌tpos 𝐺𝑋) = (𝑋𝐺𝑌)
1716fveq1i 6670 . . . . 5 ((𝑌tpos 𝐺𝑋)‘𝑅) = ((𝑋𝐺𝑌)‘𝑅)
18 fthepi.1 . . . . 5 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
1917, 18eqeltrid 2917 . . . 4 (𝜑 → ((𝑌tpos 𝐺𝑋)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
20 fthfunc 17176 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
2120ssbri 5110 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
226, 21syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
23 df-br 5066 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
2422, 23sylib 220 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
25 funcrcl 17132 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2624, 25syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simprd 498 . . . . 5 (𝜑𝐷 ∈ Cat)
28 fthepi.p . . . . 5 𝑃 = (Epi‘𝐷)
295, 27, 15, 28oppcmon 17007 . . . 4 (𝜑 → ((𝐹𝑌)(Mono‘(oppCat‘𝐷))(𝐹𝑋)) = ((𝐹𝑋)𝑃(𝐹𝑌)))
3019, 29eleqtrrd 2916 . . 3 (𝜑 → ((𝑌tpos 𝐺𝑋)‘𝑅) ∈ ((𝐹𝑌)(Mono‘(oppCat‘𝐷))(𝐹𝑋)))
313, 4, 7, 8, 9, 13, 14, 15, 30fthmon 17196 . 2 (𝜑𝑅 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋))
3226simpld 497 . . 3 (𝜑𝐶 ∈ Cat)
33 fthepi.e . . 3 𝐸 = (Epi‘𝐶)
341, 32, 14, 33oppcmon 17007 . 2 (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌))
3531, 34eleqtrd 2915 1 (𝜑𝑅 ∈ (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cop 4572   class class class wbr 5065  cfv 6354  (class class class)co 7155  tpos ctpos 7890  Basecbs 16482  Hom chom 16575  Catccat 16934  oppCatcoppc 16980  Monocmon 16997  Epicepi 16998   Func cfunc 17123   Faith cfth 17172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-hom 16588  df-cco 16589  df-cat 16938  df-cid 16939  df-oppc 16981  df-mon 16999  df-epi 17000  df-func 17127  df-fth 17174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator