MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthepi Structured version   Visualization version   GIF version

Theorem fthepi 16809
Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
fthepi.e 𝐸 = (Epi‘𝐶)
fthepi.p 𝑃 = (Epi‘𝐷)
fthepi.1 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
Assertion
Ref Expression
fthepi (𝜑𝑅 ∈ (𝑋𝐸𝑌))

Proof of Theorem fthepi
StepHypRef Expression
1 eqid 2760 . . . 4 (oppCat‘𝐶) = (oppCat‘𝐶)
2 fthmon.b . . . 4 𝐵 = (Base‘𝐶)
31, 2oppcbas 16599 . . 3 𝐵 = (Base‘(oppCat‘𝐶))
4 eqid 2760 . . 3 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
5 eqid 2760 . . . 4 (oppCat‘𝐷) = (oppCat‘𝐷)
6 fthmon.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
71, 5, 6fthoppc 16804 . . 3 (𝜑𝐹((oppCat‘𝐶) Faith (oppCat‘𝐷))tpos 𝐺)
8 fthmon.y . . 3 (𝜑𝑌𝐵)
9 fthmon.x . . 3 (𝜑𝑋𝐵)
10 fthmon.r . . . 4 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
11 fthmon.h . . . . 5 𝐻 = (Hom ‘𝐶)
1211, 1oppchom 16596 . . . 4 (𝑌(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑌)
1310, 12syl6eleqr 2850 . . 3 (𝜑𝑅 ∈ (𝑌(Hom ‘(oppCat‘𝐶))𝑋))
14 eqid 2760 . . 3 (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶))
15 eqid 2760 . . 3 (Mono‘(oppCat‘𝐷)) = (Mono‘(oppCat‘𝐷))
16 ovtpos 7537 . . . . . 6 (𝑌tpos 𝐺𝑋) = (𝑋𝐺𝑌)
1716fveq1i 6354 . . . . 5 ((𝑌tpos 𝐺𝑋)‘𝑅) = ((𝑋𝐺𝑌)‘𝑅)
18 fthepi.1 . . . . 5 (𝜑 → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
1917, 18syl5eqel 2843 . . . 4 (𝜑 → ((𝑌tpos 𝐺𝑋)‘𝑅) ∈ ((𝐹𝑋)𝑃(𝐹𝑌)))
20 fthfunc 16788 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
2120ssbri 4849 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
226, 21syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
23 df-br 4805 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
2422, 23sylib 208 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
25 funcrcl 16744 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2624, 25syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2726simprd 482 . . . . 5 (𝜑𝐷 ∈ Cat)
28 fthepi.p . . . . 5 𝑃 = (Epi‘𝐷)
295, 27, 15, 28oppcmon 16619 . . . 4 (𝜑 → ((𝐹𝑌)(Mono‘(oppCat‘𝐷))(𝐹𝑋)) = ((𝐹𝑋)𝑃(𝐹𝑌)))
3019, 29eleqtrrd 2842 . . 3 (𝜑 → ((𝑌tpos 𝐺𝑋)‘𝑅) ∈ ((𝐹𝑌)(Mono‘(oppCat‘𝐷))(𝐹𝑋)))
313, 4, 7, 8, 9, 13, 14, 15, 30fthmon 16808 . 2 (𝜑𝑅 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋))
3226simpld 477 . . 3 (𝜑𝐶 ∈ Cat)
33 fthepi.e . . 3 𝐸 = (Epi‘𝐶)
341, 32, 14, 33oppcmon 16619 . 2 (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌))
3531, 34eleqtrd 2841 1 (𝜑𝑅 ∈ (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cop 4327   class class class wbr 4804  cfv 6049  (class class class)co 6814  tpos ctpos 7521  Basecbs 16079  Hom chom 16174  Catccat 16546  oppCatcoppc 16592  Monocmon 16609  Epicepi 16610   Func cfunc 16735   Faith cfth 16784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-hom 16188  df-cco 16189  df-cat 16550  df-cid 16551  df-oppc 16593  df-mon 16611  df-epi 16612  df-func 16739  df-fth 16786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator