MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthestrcsetc Structured version   Visualization version   GIF version

Theorem fthestrcsetc 17402
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
fthestrcsetc (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fthestrcsetc
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcestrcsetc.e . . 3 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.s . . 3 𝑆 = (SetCat‘𝑈)
3 funcestrcsetc.b . . 3 𝐵 = (Base‘𝐸)
4 funcestrcsetc.c . . 3 𝐶 = (Base‘𝑆)
5 funcestrcsetc.u . . 3 (𝜑𝑈 ∈ WUni)
6 funcestrcsetc.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
7 funcestrcsetc.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
81, 2, 3, 4, 5, 6, 7funcestrcsetc 17401 . 2 (𝜑𝐹(𝐸 Func 𝑆)𝐺)
91, 2, 3, 4, 5, 6, 7funcestrcsetclem8 17399 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
105adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑈 ∈ WUni)
11 eqid 2823 . . . . . . . . . . . . 13 (Hom ‘𝐸) = (Hom ‘𝐸)
121, 5estrcbas 17377 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐸))
1312, 3syl6reqr 2877 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = 𝑈)
1413eleq2d 2900 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑎𝐵𝑎𝑈))
1514biimpcd 251 . . . . . . . . . . . . . . 15 (𝑎𝐵 → (𝜑𝑎𝑈))
1615adantr 483 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑎𝑈))
1716impcom 410 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝑈)
1813eleq2d 2900 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑏𝐵𝑏𝑈))
1918biimpcd 251 . . . . . . . . . . . . . . 15 (𝑏𝐵 → (𝜑𝑏𝑈))
2019adantl 484 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑏𝐵) → (𝜑𝑏𝑈))
2120impcom 410 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝑈)
22 eqid 2823 . . . . . . . . . . . . 13 (Base‘𝑎) = (Base‘𝑎)
23 eqid 2823 . . . . . . . . . . . . 13 (Base‘𝑏) = (Base‘𝑏)
241, 10, 11, 17, 21, 22, 23estrchom 17379 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(Hom ‘𝐸)𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2524eleq2d 2900 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
261, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 17397 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘) = )
27263expia 1117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘) = ))
2825, 27sylbid 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘) = ))
2928com12 32 . . . . . . . . 9 ( ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3029adantr 483 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘) = ))
3130impcom 410 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘) = )
3224eleq2d 2900 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) ↔ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
331, 2, 3, 4, 5, 6, 7, 22, 23funcestrcsetclem6 17397 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
34333expia 1117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3532, 34sylbid 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3635com12 32 . . . . . . . . 9 (𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3736adantl 484 . . . . . . . 8 (( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)) → ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘))
3837impcom 410 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → ((𝑎𝐺𝑏)‘𝑘) = 𝑘)
3931, 38eqeq12d 2839 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) ↔ = 𝑘))
4039biimpd 231 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ ( ∈ (𝑎(Hom ‘𝐸)𝑏) ∧ 𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏))) → (((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
4140ralrimivva 3193 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘))
42 dff13 7015 . . . 4 ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ↔ ((𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)) ∧ ∀ ∈ (𝑎(Hom ‘𝐸)𝑏)∀𝑘 ∈ (𝑎(Hom ‘𝐸)𝑏)(((𝑎𝐺𝑏)‘) = ((𝑎𝐺𝑏)‘𝑘) → = 𝑘)))
439, 41, 42sylanbrc 585 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
4443ralrimivva 3193 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
45 eqid 2823 . . 3 (Hom ‘𝑆) = (Hom ‘𝑆)
463, 11, 45isfth2 17187 . 2 (𝐹(𝐸 Faith 𝑆)𝐺 ↔ (𝐹(𝐸 Func 𝑆)𝐺 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝐺𝑏):(𝑎(Hom ‘𝐸)𝑏)–1-1→((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏))))
478, 44, 46sylanbrc 585 1 (𝜑𝐹(𝐸 Faith 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140   class class class wbr 5068  cmpt 5148   I cid 5461  cres 5559  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  cmpo 7160  m cmap 8408  WUnicwun 10124  Basecbs 16485  Hom chom 16578   Func cfunc 17126   Faith cfth 17175  SetCatcsetc 17337  ExtStrCatcestrc 17374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-wun 10126  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-func 17130  df-fth 17177  df-setc 17338  df-estrc 17375
This theorem is referenced by:  equivestrcsetc  17404
  Copyright terms: Public domain W3C validator