MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthinv Structured version   Visualization version   GIF version

Theorem fthinv 17199
Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthinv.s 𝐼 = (Inv‘𝐶)
fthinv.t 𝐽 = (Inv‘𝐷)
Assertion
Ref Expression
fthinv (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthinv
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
4 fthsect.x . . . 4 (𝜑𝑋𝐵)
5 fthsect.y . . . 4 (𝜑𝑌𝐵)
6 fthsect.m . . . 4 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
7 fthsect.n . . . 4 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
8 eqid 2824 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
9 eqid 2824 . . . 4 (Sect‘𝐷) = (Sect‘𝐷)
101, 2, 3, 4, 5, 6, 7, 8, 9fthsect 17198 . . 3 (𝜑 → (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
111, 2, 3, 5, 4, 7, 6, 8, 9fthsect 17198 . . 3 (𝜑 → (𝑁(𝑌(Sect‘𝐶)𝑋)𝑀 ↔ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
1210, 11anbi12d 632 . 2 (𝜑 → ((𝑀(𝑋(Sect‘𝐶)𝑌)𝑁𝑁(𝑌(Sect‘𝐶)𝑋)𝑀) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
13 fthinv.s . . 3 𝐼 = (Inv‘𝐶)
14 fthfunc 17180 . . . . . . . 8 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
1514ssbri 5114 . . . . . . 7 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
163, 15syl 17 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
17 df-br 5070 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
1816, 17sylib 220 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
19 funcrcl 17136 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2018, 19syl 17 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2120simpld 497 . . 3 (𝜑𝐶 ∈ Cat)
221, 13, 21, 4, 5, 8isinv 17033 . 2 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ (𝑀(𝑋(Sect‘𝐶)𝑌)𝑁𝑁(𝑌(Sect‘𝐶)𝑋)𝑀)))
23 eqid 2824 . . 3 (Base‘𝐷) = (Base‘𝐷)
24 fthinv.t . . 3 𝐽 = (Inv‘𝐷)
2520simprd 498 . . 3 (𝜑𝐷 ∈ Cat)
261, 23, 16funcf1 17139 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2726, 4ffvelrnd 6855 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2826, 5ffvelrnd 6855 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
2923, 24, 25, 27, 28, 9isinv 17033 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)(Sect‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ∧ ((𝑌𝐺𝑋)‘𝑁)((𝐹𝑌)(Sect‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀))))
3012, 22, 293bitr4d 313 1 (𝜑 → (𝑀(𝑋𝐼𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝐽(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  cop 4576   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  Hom chom 16579  Catccat 16938  Sectcsect 17017  Invcinv 17018   Func cfunc 17127   Faith cfth 17176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-map 8411  df-ixp 8465  df-cat 16942  df-cid 16943  df-sect 17020  df-inv 17021  df-func 17131  df-fth 17178
This theorem is referenced by:  ffthiso  17202
  Copyright terms: Public domain W3C validator