MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthpropd Structured version   Visualization version   GIF version

Theorem fthpropd 17183
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same faithful functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fthpropd (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))

Proof of Theorem fthpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfth 17171 . 2 Rel (𝐴 Faith 𝐶)
2 relfth 17171 . 2 Rel (𝐵 Faith 𝐷)
3 fullpropd.1 . . . . . 6 (𝜑 → (Homf𝐴) = (Homf𝐵))
4 fullpropd.2 . . . . . 6 (𝜑 → (compf𝐴) = (compf𝐵))
5 fullpropd.3 . . . . . 6 (𝜑 → (Homf𝐶) = (Homf𝐷))
6 fullpropd.4 . . . . . 6 (𝜑 → (compf𝐶) = (compf𝐷))
7 fullpropd.a . . . . . 6 (𝜑𝐴𝑉)
8 fullpropd.b . . . . . 6 (𝜑𝐵𝑉)
9 fullpropd.c . . . . . 6 (𝜑𝐶𝑉)
10 fullpropd.d . . . . . 6 (𝜑𝐷𝑉)
113, 4, 5, 6, 7, 8, 9, 10funcpropd 17162 . . . . 5 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
1211breqd 5068 . . . 4 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
133homfeqbas 16958 . . . . 5 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
1413raleqdv 3414 . . . . 5 (𝜑 → (∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦) ↔ ∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
1513, 14raleqbidv 3400 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
1612, 15anbi12d 632 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦)) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦))))
17 eqid 2819 . . . 4 (Base‘𝐴) = (Base‘𝐴)
1817isfth 17176 . . 3 (𝑓(𝐴 Faith 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)Fun (𝑥𝑔𝑦)))
19 eqid 2819 . . . 4 (Base‘𝐵) = (Base‘𝐵)
2019isfth 17176 . . 3 (𝑓(𝐵 Faith 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)Fun (𝑥𝑔𝑦)))
2116, 18, 203bitr4g 316 . 2 (𝜑 → (𝑓(𝐴 Faith 𝐶)𝑔𝑓(𝐵 Faith 𝐷)𝑔))
221, 2, 21eqbrrdiv 5660 1 (𝜑 → (𝐴 Faith 𝐶) = (𝐵 Faith 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136   class class class wbr 5057  ccnv 5547  Fun wfun 6342  cfv 6348  (class class class)co 7148  Basecbs 16475  Homf chomf 16929  compfccomf 16930   Func cfunc 17116   Faith cfth 17165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-map 8400  df-ixp 8454  df-cat 16931  df-cid 16932  df-homf 16933  df-comf 16934  df-func 17120  df-fth 17167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator