Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftpg Structured version   Visualization version   GIF version

Theorem ftpg 6463
 Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 1078 . . . 4 ((𝑋𝑈𝑌𝑉𝑍𝑊) → (𝑋𝑈𝑌𝑉))
2 3simpa 1078 . . . 4 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (𝐴𝐹𝐵𝐺))
3 simp1 1081 . . . 4 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑋𝑌)
4 fprg 6462 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ (𝐴𝐹𝐵𝐺) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
51, 2, 3, 4syl3an 1408 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
6 eqidd 2652 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩})
7 simp3 1083 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑍𝑊) → 𝑍𝑊)
8 simp3 1083 . . . . . . 7 ((𝐴𝐹𝐵𝐺𝐶𝐻) → 𝐶𝐻)
97, 8anim12i 589 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻)) → (𝑍𝑊𝐶𝐻))
1093adant3 1101 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝑍𝑊𝐶𝐻))
11 fsng 6444 . . . . 5 ((𝑍𝑊𝐶𝐻) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
1210, 11syl 17 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶} ↔ {⟨𝑍, 𝐶⟩} = {⟨𝑍, 𝐶⟩}))
136, 12mpbird 247 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶})
14 elpri 4230 . . . . . . . 8 (𝑍 ∈ {𝑋, 𝑌} → (𝑍 = 𝑋𝑍 = 𝑌))
15 eqcom 2658 . . . . . . . . . . 11 (𝑍 = 𝑋𝑋 = 𝑍)
16 nne 2827 . . . . . . . . . . 11 𝑋𝑍𝑋 = 𝑍)
1715, 16bitr4i 267 . . . . . . . . . 10 (𝑍 = 𝑋 ↔ ¬ 𝑋𝑍)
18 eqcom 2658 . . . . . . . . . . 11 (𝑍 = 𝑌𝑌 = 𝑍)
19 nne 2827 . . . . . . . . . . 11 𝑌𝑍𝑌 = 𝑍)
2018, 19bitr4i 267 . . . . . . . . . 10 (𝑍 = 𝑌 ↔ ¬ 𝑌𝑍)
2117, 20orbi12i 542 . . . . . . . . 9 ((𝑍 = 𝑋𝑍 = 𝑌) ↔ (¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
22 ianor 508 . . . . . . . . 9 (¬ (𝑋𝑍𝑌𝑍) ↔ (¬ 𝑋𝑍 ∨ ¬ 𝑌𝑍))
2321, 22sylbb2 228 . . . . . . . 8 ((𝑍 = 𝑋𝑍 = 𝑌) → ¬ (𝑋𝑍𝑌𝑍))
2414, 23syl 17 . . . . . . 7 (𝑍 ∈ {𝑋, 𝑌} → ¬ (𝑋𝑍𝑌𝑍))
2524con2i 134 . . . . . 6 ((𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
26253adant1 1099 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ¬ 𝑍 ∈ {𝑋, 𝑌})
27263ad2ant3 1104 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
28 disjsn 4278 . . . 4 (({𝑋, 𝑌} ∩ {𝑍}) = ∅ ↔ ¬ 𝑍 ∈ {𝑋, 𝑌})
2927, 28sylibr 224 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({𝑋, 𝑌} ∩ {𝑍}) = ∅)
30 fun 6104 . . 3 ((({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵} ∧ {⟨𝑍, 𝐶⟩}:{𝑍}⟶{𝐶}) ∧ ({𝑋, 𝑌} ∩ {𝑍}) = ∅) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
315, 13, 29, 30syl21anc 1365 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
32 df-tp 4215 . . . 4 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
3332feq1i 6074 . . 3 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
34 df-tp 4215 . . . 4 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
35 df-tp 4215 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
3634, 35feq23i 6077 . . 3 (({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3733, 36bitri 264 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶} ↔ ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}):({𝑋, 𝑌} ∪ {𝑍})⟶({𝐴, 𝐵} ∪ {𝐶}))
3831, 37sylibr 224 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩}:{𝑋, 𝑌, 𝑍}⟶{𝐴, 𝐵, 𝐶})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∪ cun 3605   ∩ cin 3606  ∅c0 3948  {csn 4210  {cpr 4212  {ctp 4214  ⟨cop 4216  ⟶wf 5922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933 This theorem is referenced by:  ftp  6464
 Copyright terms: Public domain W3C validator