![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fuccofval | Structured version Visualization version GIF version |
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
fucval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
fucval.b | ⊢ 𝐵 = (𝐶 Func 𝐷) |
fucval.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
fucval.a | ⊢ 𝐴 = (Base‘𝐶) |
fucval.o | ⊢ · = (comp‘𝐷) |
fucval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
fucval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
fuccofval.x | ⊢ ∙ = (comp‘𝑄) |
Ref | Expression |
---|---|
fuccofval | ⊢ (𝜑 → ∙ = (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fucval.q | . . . 4 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
2 | fucval.b | . . . 4 ⊢ 𝐵 = (𝐶 Func 𝐷) | |
3 | fucval.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | fucval.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
5 | fucval.o | . . . 4 ⊢ · = (comp‘𝐷) | |
6 | fucval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | fucval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
8 | eqidd 2761 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | fucval 16839 | . . 3 ⊢ (𝜑 → 𝑄 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
10 | 9 | fveq2d 6357 | . 2 ⊢ (𝜑 → (comp‘𝑄) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉})) |
11 | fuccofval.x | . 2 ⊢ ∙ = (comp‘𝑄) | |
12 | ovex 6842 | . . . . . 6 ⊢ (𝐶 Func 𝐷) ∈ V | |
13 | 2, 12 | eqeltri 2835 | . . . . 5 ⊢ 𝐵 ∈ V |
14 | 13, 13 | xpex 7128 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
15 | 14, 13 | mpt2ex 7416 | . . 3 ⊢ (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) ∈ V |
16 | catstr 16838 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} Struct 〈1, ;15〉 | |
17 | ccoid 16299 | . . . 4 ⊢ comp = Slot (comp‘ndx) | |
18 | snsstp3 4494 | . . . 4 ⊢ {〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} ⊆ {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} | |
19 | 16, 17, 18 | strfv 16129 | . . 3 ⊢ ((𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) ∈ V → (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉})) |
20 | 15, 19 | ax-mp 5 | . 2 ⊢ (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (comp‘{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝑁〉, 〈(comp‘ndx), (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
21 | 10, 11, 20 | 3eqtr4g 2819 | 1 ⊢ (𝜑 → ∙ = (𝑣 ∈ (𝐵 × 𝐵), ℎ ∈ 𝐵 ↦ ⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔𝑁ℎ), 𝑎 ∈ (𝑓𝑁𝑔) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 · ((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⦋csb 3674 {ctp 4325 〈cop 4327 ↦ cmpt 4881 × cxp 5264 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 1st c1st 7332 2nd c2nd 7333 1c1 10149 5c5 11285 ;cdc 11705 ndxcnx 16076 Basecbs 16079 Hom chom 16174 compcco 16175 Catccat 16546 Func cfunc 16735 Nat cnat 16822 FuncCat cfuc 16823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-hom 16188 df-cco 16189 df-fuc 16825 |
This theorem is referenced by: fucbas 16841 fuchom 16842 fucco 16843 |
Copyright terms: Public domain | W3C validator |